--- base_model: klue/roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: klue-roberta-large-ner-identified results: [] --- # klue-roberta-large-ner-identified This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co./klue/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 - Precision: 0.9920 - Recall: 0.9977 - F1: 0.9948 - Accuracy: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 61 | 0.0093 | 0.9807 | 0.9931 | 0.9869 | 0.9981 | | No log | 2.0 | 122 | 0.0065 | 0.9874 | 0.9931 | 0.9903 | 0.9984 | | No log | 3.0 | 183 | 0.0044 | 0.9920 | 0.9977 | 0.9948 | 0.9990 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1