--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - pytorch - transformers - en - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-phoneme results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: DARPA TIMIT type: timit args: en metrics: - name: Test CER type: cer value: 7.996 --- ## Model This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the Timit dataset. Check [this notebook](https://www.kaggle.com/code/vitouphy/phoneme-recognition-with-wav2vec2) for training detail. ## Usage **Approach 1:** Using HuggingFace's pipeline, this will cover everything end-to-end from raw audio input to text output. ```python from transformers import pipeline # Load the model pipe = pipeline(model="vitouphy/wav2vec2-xls-r-300m-timit-phoneme") # Process raw audio output = pipe("audio_file.wav", chunk_length_s=10, stride_length_s=(4, 2)) ``` **Approach 2:** More custom way to predict phonemes. ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch import soundfile as sf # load model and processor processor = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-timit-phoneme") model = Wav2Vec2ForCTC.from_pretrained("vitouphy/wav2vec2-xls-r-300m-timit-phoneme") # Read and process the input audio_input, sample_rate = sf.read("audio_file.wav") inputs = processor(audio_input, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits # Decode id into string predicted_ids = torch.argmax(logits, axis=-1) predicted_sentences = processor.batch_decode(predicted_ids) print(predicted_sentences) ``` ## Training and evaluation data We use [DARPA TIMIT dataset](https://www.kaggle.com/datasets/mfekadu/darpa-timit-acousticphonetic-continuous-speech) for this model. - We split into **80/10/10** for training, validation, and testing respectively. - That roughly corresponds to about **137/17/17** minutes. - The model obtained **7.996%** on this test set. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0