--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: spam-detection_m1 results: [] --- # spam-detection_m1 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on an [spam-detection](https://huggingface.co./datasets/vishnun0027/spam-detection) dataset. It achieves the following results on the evaluation set: - Loss: 0.0202 - Accuracy: 0.9967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 256 | 0.1144 | 0.9919 | | 0.22 | 2.0 | 512 | 0.0483 | 0.9923 | | 0.22 | 3.0 | 768 | 0.0321 | 0.9949 | | 0.0361 | 4.0 | 1024 | 0.0275 | 0.9949 | | 0.0361 | 5.0 | 1280 | 0.0245 | 0.9952 | | 0.0233 | 6.0 | 1536 | 0.0232 | 0.9960 | | 0.0233 | 7.0 | 1792 | 0.0220 | 0.9967 | | 0.0171 | 8.0 | 2048 | 0.0209 | 0.9967 | | 0.0171 | 9.0 | 2304 | 0.0211 | 0.9967 | | 0.0148 | 10.0 | 2560 | 0.0202 | 0.9967 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0