MC-LLaVA-3b / processing_llava.py
visheratin's picture
Update modeling file
f53fea1 verified
raw
history blame
6.97 kB
import math
from typing import List, Optional, Union
import torch
from PIL import Image
from transformers import ImageProcessingMixin, ProcessorMixin, SiglipImageProcessor, AutoTokenizer, AutoImageProcessor
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.tokenization_utils_base import (
PaddingStrategy,
PreTokenizedInput,
TextInput,
TruncationStrategy,
)
from transformers.utils import TensorType
class MultiCropImageProcessor(ImageProcessingMixin):
def __init__(self, model_name, max_crops=0, **kwargs):
self.processor = SiglipImageProcessor.from_pretrained(model_name)
self.crop_size = 384
self.max_crops = max_crops
self.stride_ratio = 2
def __call__(
self,
images: List[Image.Image],
max_crops: int = -1,
):
res = {
"pixel_values": [],
"coords": [],
}
if max_crops < 0:
max_crops = self.max_crops
for image in images:
outputs, output_coords = self.process_image(image, max_crops)
res["pixel_values"].append(outputs)
res["coords"].append(output_coords)
return res
def process_image(
self,
image: Image.Image,
max_crops: int
):
outputs = []
output_coords = []
outputs.append(self.processor(image, return_tensors="pt").pixel_values)
output_coords.append(torch.tensor([0.5, 0.5]))
width, height = image.size
crop_size = self.crop_size
stride = crop_size // self.stride_ratio
if (
max_crops == 0
or width <= (crop_size + stride)
and height <= (crop_size + stride)
):
outputs = torch.cat(outputs, dim=0)
output_coords = torch.cat(output_coords, dim=0)
return outputs, output_coords
total_tokens = math.inf
while total_tokens > max_crops:
total_tokens = (
math.floor((width - crop_size) / stride) + 1
) * (
math.floor((height - crop_size) / stride) + 1
)
if total_tokens > max_crops:
crop_size += 10
stride = crop_size // self.stride_ratio
stride = crop_size // self.stride_ratio
x_steps = int(math.floor((width - crop_size) / stride) + 1)
if x_steps < 1:
x_steps = 1
y_steps = int(math.floor((height - crop_size) / stride) + 1)
if y_steps < 1:
y_steps = 1
if x_steps == 1 and y_steps == 1:
outputs = torch.cat(outputs, dim=0)
output_coords = torch.cat(output_coords, dim=0)
return outputs, output_coords
x_coords = []
y_coords = []
for i in range(x_steps):
x_coords.append([i * stride, i * stride + crop_size])
if x_coords[-1][1] != width:
x_coords[-1][1] = width
for i in range(y_steps):
y_coords.append([i * stride, i * stride + crop_size])
if y_coords[-1][1] != height:
y_coords[-1][1] = height
image_parts = []
part_coords = []
for i in range(len(x_coords)):
for j in range(len(y_coords)):
image_parts.append(
image.crop(
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
)
)
part_coords.append(
torch.tensor(
[
(x_coords[i][0] + x_coords[i][1]) / 2 / width,
(y_coords[j][0] + y_coords[j][1]) / 2 / height,
]
)
)
for image_part in image_parts:
outputs.append(self.processor(image_part, return_tensors="pt").pixel_values)
for part_coord in part_coords:
output_coords.append(part_coord)
outputs = torch.cat(outputs, dim=0)
output_coords = torch.stack(output_coords, dim=0)
return outputs, output_coords
class LlavaProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = MultiCropImageProcessor
tokenizer_class = "SiglipTokenizer"
def __init__(self, image_processor: MultiCropImageProcessor, tokenizer):
self.image_processor = image_processor
self.tokenizer = tokenizer
self.search_model = None
@classmethod
def from_pretrained(cls, path, trust_remote_code=True, **kwargs):
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=trust_remote_code)
image_processor = MultiCropImageProcessor(path, trust_remote_code=trust_remote_code)
return LlavaProcessor(image_processor, tokenizer)
def __call__(
self,
text: Union[
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
] = None,
images: ImageInput = None,
model = None,
max_crops: int = 0,
num_tokens = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
if images is not None:
processor_outputs = self.image_processor(images, max_crops)
pixel_values = processor_outputs["pixel_values"]
pixel_values = [
value.to(model.device).to(model.dtype) for value in pixel_values
]
coords = processor_outputs["coords"]
coords = [value.to(model.device).to(model.dtype) for value in coords]
image_outputs = model.vision_model(pixel_values, coords, num_tokens)
image_features = model.multi_modal_projector(image_outputs)
else:
image_features = None
text_inputs = self.tokenizer(
text,
return_tensors=return_tensors,
padding=padding,
truncation=truncation,
max_length=max_length,
)
text_inputs['input_ids'] = text_inputs['input_ids'].to(model.device)
text_inputs['attention_mask'] = text_inputs['attention_mask'].to(model.device)
return BatchFeature(data={**text_inputs, "image_features": image_features})
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))