--- license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: convnextv2-tiny-1k-224-finetuned-fullwear-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8229166666666666 - name: Precision type: precision value: 0.8355769851835295 --- # convnextv2-tiny-1k-224-finetuned-fullwear-v2 This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co./facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5128 - Accuracy: 0.8229 - Precision: 0.8356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:| | No log | 1.0 | 116 | 1.8085 | 0.5625 | 0.6486 | | No log | 2.0 | 232 | 1.2627 | 0.6771 | 0.7218 | | No log | 3.0 | 348 | 1.0071 | 0.6806 | 0.7166 | | No log | 4.0 | 464 | 0.8603 | 0.7188 | 0.7466 | | 1.3688 | 5.0 | 580 | 0.7240 | 0.7708 | 0.8074 | | 1.3688 | 6.0 | 696 | 0.7496 | 0.7535 | 0.7994 | | 1.3688 | 7.0 | 812 | 0.5832 | 0.8056 | 0.8176 | | 1.3688 | 8.0 | 928 | 0.5809 | 0.7986 | 0.8156 | | 0.4904 | 9.0 | 1044 | 0.5456 | 0.7986 | 0.8052 | | 0.4904 | 10.0 | 1160 | 0.5833 | 0.7951 | 0.8198 | | 0.4904 | 11.0 | 1276 | 0.5782 | 0.7986 | 0.8069 | | 0.4904 | 12.0 | 1392 | 0.5128 | 0.8229 | 0.8356 | | 0.2966 | 13.0 | 1508 | 0.5421 | 0.8160 | 0.8319 | | 0.2966 | 14.0 | 1624 | 0.6090 | 0.7847 | 0.8171 | | 0.2966 | 15.0 | 1740 | 0.6090 | 0.8021 | 0.8135 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1