vishalkatheriya18
commited on
End of training
Browse files- README.md +211 -0
- all_results.json +13 -0
- config.json +63 -0
- eval_results.json +8 -0
- model.safetensors +3 -0
- preprocessor_config.json +22 -0
- train_results.json +8 -0
- trainer_state.json +1878 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-tiny-1k-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: convnextv2-tiny-1k-224-finetuned-bottomwear
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.875
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# convnextv2-tiny-1k-224-finetuned-bottomwear
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3252
|
36 |
+
- Accuracy: 0.875
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 150
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:--------:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 0.8889 | 6 | 2.0789 | 0.0938 |
|
71 |
+
| 2.1005 | 1.9259 | 13 | 2.0276 | 0.125 |
|
72 |
+
| 2.0321 | 2.9630 | 20 | 1.9456 | 0.2812 |
|
73 |
+
| 2.0321 | 4.0 | 27 | 1.8393 | 0.4583 |
|
74 |
+
| 1.9151 | 4.8889 | 33 | 1.7343 | 0.5833 |
|
75 |
+
| 1.7396 | 5.9259 | 40 | 1.5972 | 0.6042 |
|
76 |
+
| 1.7396 | 6.9630 | 47 | 1.4546 | 0.6771 |
|
77 |
+
| 1.5392 | 8.0 | 54 | 1.2943 | 0.7396 |
|
78 |
+
| 1.3096 | 8.8889 | 60 | 1.1409 | 0.7396 |
|
79 |
+
| 1.3096 | 9.9259 | 67 | 0.9841 | 0.8229 |
|
80 |
+
| 1.1062 | 10.9630 | 74 | 0.8512 | 0.8229 |
|
81 |
+
| 0.896 | 12.0 | 81 | 0.7128 | 0.8542 |
|
82 |
+
| 0.896 | 12.8889 | 87 | 0.6366 | 0.8333 |
|
83 |
+
| 0.712 | 13.9259 | 94 | 0.5419 | 0.8646 |
|
84 |
+
| 0.6231 | 14.9630 | 101 | 0.5082 | 0.8646 |
|
85 |
+
| 0.6231 | 16.0 | 108 | 0.4674 | 0.875 |
|
86 |
+
| 0.4962 | 16.8889 | 114 | 0.4480 | 0.8542 |
|
87 |
+
| 0.4322 | 17.9259 | 121 | 0.4138 | 0.875 |
|
88 |
+
| 0.4322 | 18.9630 | 128 | 0.3947 | 0.8646 |
|
89 |
+
| 0.3937 | 20.0 | 135 | 0.3827 | 0.8646 |
|
90 |
+
| 0.3377 | 20.8889 | 141 | 0.3626 | 0.8646 |
|
91 |
+
| 0.3377 | 21.9259 | 148 | 0.3579 | 0.8646 |
|
92 |
+
| 0.3099 | 22.9630 | 155 | 0.3558 | 0.8646 |
|
93 |
+
| 0.2895 | 24.0 | 162 | 0.3243 | 0.8646 |
|
94 |
+
| 0.2895 | 24.8889 | 168 | 0.3473 | 0.875 |
|
95 |
+
| 0.2732 | 25.9259 | 175 | 0.3461 | 0.8646 |
|
96 |
+
| 0.2447 | 26.9630 | 182 | 0.3450 | 0.8958 |
|
97 |
+
| 0.2447 | 28.0 | 189 | 0.3603 | 0.8958 |
|
98 |
+
| 0.2009 | 28.8889 | 195 | 0.3214 | 0.8854 |
|
99 |
+
| 0.2064 | 29.9259 | 202 | 0.3043 | 0.875 |
|
100 |
+
| 0.2064 | 30.9630 | 209 | 0.2917 | 0.8958 |
|
101 |
+
| 0.2139 | 32.0 | 216 | 0.2860 | 0.8958 |
|
102 |
+
| 0.1732 | 32.8889 | 222 | 0.3314 | 0.8333 |
|
103 |
+
| 0.1732 | 33.9259 | 229 | 0.3391 | 0.875 |
|
104 |
+
| 0.2009 | 34.9630 | 236 | 0.3118 | 0.8958 |
|
105 |
+
| 0.1683 | 36.0 | 243 | 0.3162 | 0.875 |
|
106 |
+
| 0.1683 | 36.8889 | 249 | 0.3011 | 0.8646 |
|
107 |
+
| 0.16 | 37.9259 | 256 | 0.2981 | 0.8854 |
|
108 |
+
| 0.1448 | 38.9630 | 263 | 0.3417 | 0.9062 |
|
109 |
+
| 0.1272 | 40.0 | 270 | 0.3558 | 0.8646 |
|
110 |
+
| 0.1272 | 40.8889 | 276 | 0.3948 | 0.8542 |
|
111 |
+
| 0.1578 | 41.9259 | 283 | 0.3668 | 0.8646 |
|
112 |
+
| 0.1604 | 42.9630 | 290 | 0.3342 | 0.8958 |
|
113 |
+
| 0.1604 | 44.0 | 297 | 0.3141 | 0.9167 |
|
114 |
+
| 0.1251 | 44.8889 | 303 | 0.3266 | 0.8854 |
|
115 |
+
| 0.1449 | 45.9259 | 310 | 0.3438 | 0.8854 |
|
116 |
+
| 0.1449 | 46.9630 | 317 | 0.3383 | 0.875 |
|
117 |
+
| 0.1134 | 48.0 | 324 | 0.3341 | 0.8958 |
|
118 |
+
| 0.1558 | 48.8889 | 330 | 0.2855 | 0.8958 |
|
119 |
+
| 0.1558 | 49.9259 | 337 | 0.2843 | 0.8958 |
|
120 |
+
| 0.1433 | 50.9630 | 344 | 0.2879 | 0.8438 |
|
121 |
+
| 0.1207 | 52.0 | 351 | 0.2887 | 0.8854 |
|
122 |
+
| 0.1207 | 52.8889 | 357 | 0.3173 | 0.8958 |
|
123 |
+
| 0.1006 | 53.9259 | 364 | 0.2926 | 0.8854 |
|
124 |
+
| 0.1053 | 54.9630 | 371 | 0.2791 | 0.9062 |
|
125 |
+
| 0.1053 | 56.0 | 378 | 0.3276 | 0.875 |
|
126 |
+
| 0.106 | 56.8889 | 384 | 0.3224 | 0.875 |
|
127 |
+
| 0.1058 | 57.9259 | 391 | 0.3385 | 0.8854 |
|
128 |
+
| 0.1058 | 58.9630 | 398 | 0.3494 | 0.8958 |
|
129 |
+
| 0.0962 | 60.0 | 405 | 0.2798 | 0.8854 |
|
130 |
+
| 0.0883 | 60.8889 | 411 | 0.2934 | 0.8854 |
|
131 |
+
| 0.0883 | 61.9259 | 418 | 0.2956 | 0.875 |
|
132 |
+
| 0.084 | 62.9630 | 425 | 0.2918 | 0.8958 |
|
133 |
+
| 0.0808 | 64.0 | 432 | 0.3416 | 0.8854 |
|
134 |
+
| 0.0808 | 64.8889 | 438 | 0.3502 | 0.8854 |
|
135 |
+
| 0.0804 | 65.9259 | 445 | 0.2985 | 0.8958 |
|
136 |
+
| 0.0854 | 66.9630 | 452 | 0.2792 | 0.9062 |
|
137 |
+
| 0.0854 | 68.0 | 459 | 0.3644 | 0.8958 |
|
138 |
+
| 0.0887 | 68.8889 | 465 | 0.2684 | 0.9062 |
|
139 |
+
| 0.0671 | 69.9259 | 472 | 0.2802 | 0.8958 |
|
140 |
+
| 0.0671 | 70.9630 | 479 | 0.2901 | 0.9062 |
|
141 |
+
| 0.0704 | 72.0 | 486 | 0.3098 | 0.8854 |
|
142 |
+
| 0.0802 | 72.8889 | 492 | 0.2960 | 0.8854 |
|
143 |
+
| 0.0802 | 73.9259 | 499 | 0.2757 | 0.875 |
|
144 |
+
| 0.09 | 74.9630 | 506 | 0.3104 | 0.8646 |
|
145 |
+
| 0.0772 | 76.0 | 513 | 0.3120 | 0.8958 |
|
146 |
+
| 0.0772 | 76.8889 | 519 | 0.2803 | 0.9167 |
|
147 |
+
| 0.0725 | 77.9259 | 526 | 0.2825 | 0.8958 |
|
148 |
+
| 0.0684 | 78.9630 | 533 | 0.3255 | 0.875 |
|
149 |
+
| 0.0732 | 80.0 | 540 | 0.3091 | 0.9062 |
|
150 |
+
| 0.0732 | 80.8889 | 546 | 0.2876 | 0.9167 |
|
151 |
+
| 0.0743 | 81.9259 | 553 | 0.3035 | 0.8646 |
|
152 |
+
| 0.0807 | 82.9630 | 560 | 0.2751 | 0.9271 |
|
153 |
+
| 0.0807 | 84.0 | 567 | 0.2657 | 0.9167 |
|
154 |
+
| 0.0799 | 84.8889 | 573 | 0.2810 | 0.9062 |
|
155 |
+
| 0.0632 | 85.9259 | 580 | 0.3037 | 0.9062 |
|
156 |
+
| 0.0632 | 86.9630 | 587 | 0.3357 | 0.9062 |
|
157 |
+
| 0.0579 | 88.0 | 594 | 0.3171 | 0.8646 |
|
158 |
+
| 0.0593 | 88.8889 | 600 | 0.3223 | 0.8854 |
|
159 |
+
| 0.0593 | 89.9259 | 607 | 0.2977 | 0.8958 |
|
160 |
+
| 0.0418 | 90.9630 | 614 | 0.3380 | 0.9062 |
|
161 |
+
| 0.0647 | 92.0 | 621 | 0.2863 | 0.875 |
|
162 |
+
| 0.0647 | 92.8889 | 627 | 0.2899 | 0.9167 |
|
163 |
+
| 0.0649 | 93.9259 | 634 | 0.2853 | 0.8958 |
|
164 |
+
| 0.0538 | 94.9630 | 641 | 0.2452 | 0.8854 |
|
165 |
+
| 0.0538 | 96.0 | 648 | 0.2569 | 0.8958 |
|
166 |
+
| 0.0483 | 96.8889 | 654 | 0.2687 | 0.9062 |
|
167 |
+
| 0.0597 | 97.9259 | 661 | 0.3083 | 0.875 |
|
168 |
+
| 0.0597 | 98.9630 | 668 | 0.2929 | 0.8646 |
|
169 |
+
| 0.0544 | 100.0 | 675 | 0.3253 | 0.875 |
|
170 |
+
| 0.0585 | 100.8889 | 681 | 0.3394 | 0.8646 |
|
171 |
+
| 0.0585 | 101.9259 | 688 | 0.3748 | 0.8542 |
|
172 |
+
| 0.0563 | 102.9630 | 695 | 0.3890 | 0.8646 |
|
173 |
+
| 0.059 | 104.0 | 702 | 0.3460 | 0.8854 |
|
174 |
+
| 0.059 | 104.8889 | 708 | 0.3308 | 0.875 |
|
175 |
+
| 0.0601 | 105.9259 | 715 | 0.3228 | 0.875 |
|
176 |
+
| 0.0512 | 106.9630 | 722 | 0.3190 | 0.8854 |
|
177 |
+
| 0.0512 | 108.0 | 729 | 0.3028 | 0.875 |
|
178 |
+
| 0.0346 | 108.8889 | 735 | 0.3066 | 0.9062 |
|
179 |
+
| 0.0434 | 109.9259 | 742 | 0.2952 | 0.9062 |
|
180 |
+
| 0.0434 | 110.9630 | 749 | 0.3054 | 0.9062 |
|
181 |
+
| 0.0466 | 112.0 | 756 | 0.3087 | 0.8958 |
|
182 |
+
| 0.0402 | 112.8889 | 762 | 0.3212 | 0.875 |
|
183 |
+
| 0.0402 | 113.9259 | 769 | 0.3235 | 0.8854 |
|
184 |
+
| 0.0491 | 114.9630 | 776 | 0.3135 | 0.9062 |
|
185 |
+
| 0.0495 | 116.0 | 783 | 0.2991 | 0.8958 |
|
186 |
+
| 0.0495 | 116.8889 | 789 | 0.3051 | 0.8854 |
|
187 |
+
| 0.0536 | 117.9259 | 796 | 0.3339 | 0.875 |
|
188 |
+
| 0.0419 | 118.9630 | 803 | 0.3371 | 0.8646 |
|
189 |
+
| 0.0333 | 120.0 | 810 | 0.3376 | 0.8646 |
|
190 |
+
| 0.0333 | 120.8889 | 816 | 0.3379 | 0.8646 |
|
191 |
+
| 0.0376 | 121.9259 | 823 | 0.3373 | 0.8542 |
|
192 |
+
| 0.0397 | 122.9630 | 830 | 0.3437 | 0.8646 |
|
193 |
+
| 0.0397 | 124.0 | 837 | 0.3585 | 0.8646 |
|
194 |
+
| 0.0299 | 124.8889 | 843 | 0.3514 | 0.8646 |
|
195 |
+
| 0.0468 | 125.9259 | 850 | 0.3397 | 0.8646 |
|
196 |
+
| 0.0468 | 126.9630 | 857 | 0.3316 | 0.8542 |
|
197 |
+
| 0.0351 | 128.0 | 864 | 0.3334 | 0.8646 |
|
198 |
+
| 0.0439 | 128.8889 | 870 | 0.3324 | 0.8646 |
|
199 |
+
| 0.0439 | 129.9259 | 877 | 0.3290 | 0.8646 |
|
200 |
+
| 0.0478 | 130.9630 | 884 | 0.3256 | 0.875 |
|
201 |
+
| 0.0434 | 132.0 | 891 | 0.3253 | 0.875 |
|
202 |
+
| 0.0434 | 132.8889 | 897 | 0.3251 | 0.875 |
|
203 |
+
| 0.0374 | 133.3333 | 900 | 0.3252 | 0.875 |
|
204 |
+
|
205 |
+
|
206 |
+
### Framework versions
|
207 |
+
|
208 |
+
- Transformers 4.44.0
|
209 |
+
- Pytorch 2.4.0
|
210 |
+
- Datasets 2.21.0
|
211 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 133.33333333333334,
|
3 |
+
"eval_accuracy": 0.875,
|
4 |
+
"eval_loss": 0.3251601457595825,
|
5 |
+
"eval_runtime": 1.9072,
|
6 |
+
"eval_samples_per_second": 50.336,
|
7 |
+
"eval_steps_per_second": 1.573,
|
8 |
+
"total_flos": 2.900008367869133e+18,
|
9 |
+
"train_loss": 0.254776107304626,
|
10 |
+
"train_runtime": 3168.008,
|
11 |
+
"train_samples_per_second": 40.909,
|
12 |
+
"train_steps_per_second": 0.284
|
13 |
+
}
|
config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/convnextv2-tiny-1k-224",
|
3 |
+
"architectures": [
|
4 |
+
"ConvNextV2ForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
3,
|
9 |
+
9,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"drop_path_rate": 0.0,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_sizes": [
|
15 |
+
96,
|
16 |
+
192,
|
17 |
+
384,
|
18 |
+
768
|
19 |
+
],
|
20 |
+
"id2label": {
|
21 |
+
"0": "Joggers",
|
22 |
+
"1": "capri",
|
23 |
+
"2": "jeans",
|
24 |
+
"3": "legging",
|
25 |
+
"4": "plazzo",
|
26 |
+
"5": "shorts",
|
27 |
+
"6": "skirt",
|
28 |
+
"7": "trouser"
|
29 |
+
},
|
30 |
+
"image_size": 224,
|
31 |
+
"initializer_range": 0.02,
|
32 |
+
"label2id": {
|
33 |
+
"Joggers": 0,
|
34 |
+
"capri": 1,
|
35 |
+
"jeans": 2,
|
36 |
+
"legging": 3,
|
37 |
+
"plazzo": 4,
|
38 |
+
"shorts": 5,
|
39 |
+
"skirt": 6,
|
40 |
+
"trouser": 7
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-12,
|
43 |
+
"model_type": "convnextv2",
|
44 |
+
"num_channels": 3,
|
45 |
+
"num_stages": 4,
|
46 |
+
"out_features": [
|
47 |
+
"stage4"
|
48 |
+
],
|
49 |
+
"out_indices": [
|
50 |
+
4
|
51 |
+
],
|
52 |
+
"patch_size": 4,
|
53 |
+
"problem_type": "single_label_classification",
|
54 |
+
"stage_names": [
|
55 |
+
"stem",
|
56 |
+
"stage1",
|
57 |
+
"stage2",
|
58 |
+
"stage3",
|
59 |
+
"stage4"
|
60 |
+
],
|
61 |
+
"torch_dtype": "float32",
|
62 |
+
"transformers_version": "4.44.0"
|
63 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 133.33333333333334,
|
3 |
+
"eval_accuracy": 0.875,
|
4 |
+
"eval_loss": 0.3251601457595825,
|
5 |
+
"eval_runtime": 1.9072,
|
6 |
+
"eval_samples_per_second": 50.336,
|
7 |
+
"eval_steps_per_second": 1.573
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8f099c1831a684faed07a84fae545a0dddb59175246b149de929085d23eaaca
|
3 |
+
size 111514288
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_pct": 0.875,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "ConvNextImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"shortest_edge": 224
|
21 |
+
}
|
22 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 133.33333333333334,
|
3 |
+
"total_flos": 2.900008367869133e+18,
|
4 |
+
"train_loss": 0.254776107304626,
|
5 |
+
"train_runtime": 3168.008,
|
6 |
+
"train_samples_per_second": 40.909,
|
7 |
+
"train_steps_per_second": 0.284
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1878 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 133.33333333333334,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 900,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.8888888888888888,
|
13 |
+
"eval_accuracy": 0.09375,
|
14 |
+
"eval_loss": 2.078925609588623,
|
15 |
+
"eval_runtime": 2.1652,
|
16 |
+
"eval_samples_per_second": 44.337,
|
17 |
+
"eval_steps_per_second": 1.386,
|
18 |
+
"step": 6
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 1.4814814814814814,
|
22 |
+
"grad_norm": 4.666333198547363,
|
23 |
+
"learning_rate": 5.555555555555556e-06,
|
24 |
+
"loss": 2.1005,
|
25 |
+
"step": 10
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 1.925925925925926,
|
29 |
+
"eval_accuracy": 0.125,
|
30 |
+
"eval_loss": 2.027583122253418,
|
31 |
+
"eval_runtime": 1.9426,
|
32 |
+
"eval_samples_per_second": 49.419,
|
33 |
+
"eval_steps_per_second": 1.544,
|
34 |
+
"step": 13
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 2.962962962962963,
|
38 |
+
"grad_norm": 6.9924726486206055,
|
39 |
+
"learning_rate": 1.1111111111111112e-05,
|
40 |
+
"loss": 2.0321,
|
41 |
+
"step": 20
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 2.962962962962963,
|
45 |
+
"eval_accuracy": 0.28125,
|
46 |
+
"eval_loss": 1.945550560951233,
|
47 |
+
"eval_runtime": 1.8821,
|
48 |
+
"eval_samples_per_second": 51.006,
|
49 |
+
"eval_steps_per_second": 1.594,
|
50 |
+
"step": 20
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 4.0,
|
54 |
+
"eval_accuracy": 0.4583333333333333,
|
55 |
+
"eval_loss": 1.8392573595046997,
|
56 |
+
"eval_runtime": 1.8452,
|
57 |
+
"eval_samples_per_second": 52.028,
|
58 |
+
"eval_steps_per_second": 1.626,
|
59 |
+
"step": 27
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 4.444444444444445,
|
63 |
+
"grad_norm": 6.883745193481445,
|
64 |
+
"learning_rate": 1.6666666666666667e-05,
|
65 |
+
"loss": 1.9151,
|
66 |
+
"step": 30
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 4.888888888888889,
|
70 |
+
"eval_accuracy": 0.5833333333333334,
|
71 |
+
"eval_loss": 1.7343072891235352,
|
72 |
+
"eval_runtime": 1.8707,
|
73 |
+
"eval_samples_per_second": 51.318,
|
74 |
+
"eval_steps_per_second": 1.604,
|
75 |
+
"step": 33
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 5.925925925925926,
|
79 |
+
"grad_norm": 12.400025367736816,
|
80 |
+
"learning_rate": 2.2222222222222223e-05,
|
81 |
+
"loss": 1.7396,
|
82 |
+
"step": 40
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 5.925925925925926,
|
86 |
+
"eval_accuracy": 0.6041666666666666,
|
87 |
+
"eval_loss": 1.5971508026123047,
|
88 |
+
"eval_runtime": 1.891,
|
89 |
+
"eval_samples_per_second": 50.767,
|
90 |
+
"eval_steps_per_second": 1.586,
|
91 |
+
"step": 40
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 6.962962962962963,
|
95 |
+
"eval_accuracy": 0.6770833333333334,
|
96 |
+
"eval_loss": 1.4546260833740234,
|
97 |
+
"eval_runtime": 1.8412,
|
98 |
+
"eval_samples_per_second": 52.14,
|
99 |
+
"eval_steps_per_second": 1.629,
|
100 |
+
"step": 47
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 7.407407407407407,
|
104 |
+
"grad_norm": 11.476837158203125,
|
105 |
+
"learning_rate": 2.777777777777778e-05,
|
106 |
+
"loss": 1.5392,
|
107 |
+
"step": 50
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 8.0,
|
111 |
+
"eval_accuracy": 0.7395833333333334,
|
112 |
+
"eval_loss": 1.2942534685134888,
|
113 |
+
"eval_runtime": 1.9365,
|
114 |
+
"eval_samples_per_second": 49.574,
|
115 |
+
"eval_steps_per_second": 1.549,
|
116 |
+
"step": 54
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 8.88888888888889,
|
120 |
+
"grad_norm": 14.580023765563965,
|
121 |
+
"learning_rate": 3.3333333333333335e-05,
|
122 |
+
"loss": 1.3096,
|
123 |
+
"step": 60
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 8.88888888888889,
|
127 |
+
"eval_accuracy": 0.7395833333333334,
|
128 |
+
"eval_loss": 1.1409353017807007,
|
129 |
+
"eval_runtime": 1.8719,
|
130 |
+
"eval_samples_per_second": 51.286,
|
131 |
+
"eval_steps_per_second": 1.603,
|
132 |
+
"step": 60
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"epoch": 9.925925925925926,
|
136 |
+
"eval_accuracy": 0.8229166666666666,
|
137 |
+
"eval_loss": 0.9840934872627258,
|
138 |
+
"eval_runtime": 1.8663,
|
139 |
+
"eval_samples_per_second": 51.44,
|
140 |
+
"eval_steps_per_second": 1.607,
|
141 |
+
"step": 67
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 10.37037037037037,
|
145 |
+
"grad_norm": 15.968297958374023,
|
146 |
+
"learning_rate": 3.888888888888889e-05,
|
147 |
+
"loss": 1.1062,
|
148 |
+
"step": 70
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 10.962962962962964,
|
152 |
+
"eval_accuracy": 0.8229166666666666,
|
153 |
+
"eval_loss": 0.851224958896637,
|
154 |
+
"eval_runtime": 1.9128,
|
155 |
+
"eval_samples_per_second": 50.189,
|
156 |
+
"eval_steps_per_second": 1.568,
|
157 |
+
"step": 74
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 11.851851851851851,
|
161 |
+
"grad_norm": 23.297271728515625,
|
162 |
+
"learning_rate": 4.4444444444444447e-05,
|
163 |
+
"loss": 0.896,
|
164 |
+
"step": 80
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 12.0,
|
168 |
+
"eval_accuracy": 0.8541666666666666,
|
169 |
+
"eval_loss": 0.7128415703773499,
|
170 |
+
"eval_runtime": 1.8414,
|
171 |
+
"eval_samples_per_second": 52.136,
|
172 |
+
"eval_steps_per_second": 1.629,
|
173 |
+
"step": 81
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 12.88888888888889,
|
177 |
+
"eval_accuracy": 0.8333333333333334,
|
178 |
+
"eval_loss": 0.6365618109703064,
|
179 |
+
"eval_runtime": 1.8634,
|
180 |
+
"eval_samples_per_second": 51.518,
|
181 |
+
"eval_steps_per_second": 1.61,
|
182 |
+
"step": 87
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 13.333333333333334,
|
186 |
+
"grad_norm": 24.776830673217773,
|
187 |
+
"learning_rate": 5e-05,
|
188 |
+
"loss": 0.712,
|
189 |
+
"step": 90
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 13.925925925925926,
|
193 |
+
"eval_accuracy": 0.8645833333333334,
|
194 |
+
"eval_loss": 0.5419111847877502,
|
195 |
+
"eval_runtime": 1.874,
|
196 |
+
"eval_samples_per_second": 51.228,
|
197 |
+
"eval_steps_per_second": 1.601,
|
198 |
+
"step": 94
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 14.814814814814815,
|
202 |
+
"grad_norm": 26.37338638305664,
|
203 |
+
"learning_rate": 4.938271604938271e-05,
|
204 |
+
"loss": 0.6231,
|
205 |
+
"step": 100
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 14.962962962962964,
|
209 |
+
"eval_accuracy": 0.8645833333333334,
|
210 |
+
"eval_loss": 0.5082051753997803,
|
211 |
+
"eval_runtime": 1.8338,
|
212 |
+
"eval_samples_per_second": 52.35,
|
213 |
+
"eval_steps_per_second": 1.636,
|
214 |
+
"step": 101
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 16.0,
|
218 |
+
"eval_accuracy": 0.875,
|
219 |
+
"eval_loss": 0.4674176871776581,
|
220 |
+
"eval_runtime": 1.878,
|
221 |
+
"eval_samples_per_second": 51.118,
|
222 |
+
"eval_steps_per_second": 1.597,
|
223 |
+
"step": 108
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 16.296296296296298,
|
227 |
+
"grad_norm": 26.630212783813477,
|
228 |
+
"learning_rate": 4.876543209876544e-05,
|
229 |
+
"loss": 0.4962,
|
230 |
+
"step": 110
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 16.88888888888889,
|
234 |
+
"eval_accuracy": 0.8541666666666666,
|
235 |
+
"eval_loss": 0.4479581415653229,
|
236 |
+
"eval_runtime": 1.8306,
|
237 |
+
"eval_samples_per_second": 52.441,
|
238 |
+
"eval_steps_per_second": 1.639,
|
239 |
+
"step": 114
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 17.77777777777778,
|
243 |
+
"grad_norm": 23.847532272338867,
|
244 |
+
"learning_rate": 4.814814814814815e-05,
|
245 |
+
"loss": 0.4322,
|
246 |
+
"step": 120
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 17.925925925925927,
|
250 |
+
"eval_accuracy": 0.875,
|
251 |
+
"eval_loss": 0.41380929946899414,
|
252 |
+
"eval_runtime": 1.8812,
|
253 |
+
"eval_samples_per_second": 51.03,
|
254 |
+
"eval_steps_per_second": 1.595,
|
255 |
+
"step": 121
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 18.962962962962962,
|
259 |
+
"eval_accuracy": 0.8645833333333334,
|
260 |
+
"eval_loss": 0.39465710520744324,
|
261 |
+
"eval_runtime": 1.8978,
|
262 |
+
"eval_samples_per_second": 50.584,
|
263 |
+
"eval_steps_per_second": 1.581,
|
264 |
+
"step": 128
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 19.25925925925926,
|
268 |
+
"grad_norm": 23.30731201171875,
|
269 |
+
"learning_rate": 4.7530864197530866e-05,
|
270 |
+
"loss": 0.3937,
|
271 |
+
"step": 130
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 20.0,
|
275 |
+
"eval_accuracy": 0.8645833333333334,
|
276 |
+
"eval_loss": 0.3826509416103363,
|
277 |
+
"eval_runtime": 1.8444,
|
278 |
+
"eval_samples_per_second": 52.05,
|
279 |
+
"eval_steps_per_second": 1.627,
|
280 |
+
"step": 135
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 20.74074074074074,
|
284 |
+
"grad_norm": 22.551395416259766,
|
285 |
+
"learning_rate": 4.691358024691358e-05,
|
286 |
+
"loss": 0.3377,
|
287 |
+
"step": 140
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 20.88888888888889,
|
291 |
+
"eval_accuracy": 0.8645833333333334,
|
292 |
+
"eval_loss": 0.36256420612335205,
|
293 |
+
"eval_runtime": 1.8807,
|
294 |
+
"eval_samples_per_second": 51.044,
|
295 |
+
"eval_steps_per_second": 1.595,
|
296 |
+
"step": 141
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 21.925925925925927,
|
300 |
+
"eval_accuracy": 0.8645833333333334,
|
301 |
+
"eval_loss": 0.3579378128051758,
|
302 |
+
"eval_runtime": 1.8493,
|
303 |
+
"eval_samples_per_second": 51.911,
|
304 |
+
"eval_steps_per_second": 1.622,
|
305 |
+
"step": 148
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 22.22222222222222,
|
309 |
+
"grad_norm": 19.129470825195312,
|
310 |
+
"learning_rate": 4.62962962962963e-05,
|
311 |
+
"loss": 0.3099,
|
312 |
+
"step": 150
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 22.962962962962962,
|
316 |
+
"eval_accuracy": 0.8645833333333334,
|
317 |
+
"eval_loss": 0.35575783252716064,
|
318 |
+
"eval_runtime": 1.8947,
|
319 |
+
"eval_samples_per_second": 50.668,
|
320 |
+
"eval_steps_per_second": 1.583,
|
321 |
+
"step": 155
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 23.703703703703702,
|
325 |
+
"grad_norm": 34.541709899902344,
|
326 |
+
"learning_rate": 4.567901234567901e-05,
|
327 |
+
"loss": 0.2895,
|
328 |
+
"step": 160
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 24.0,
|
332 |
+
"eval_accuracy": 0.8645833333333334,
|
333 |
+
"eval_loss": 0.3242819011211395,
|
334 |
+
"eval_runtime": 1.9128,
|
335 |
+
"eval_samples_per_second": 50.188,
|
336 |
+
"eval_steps_per_second": 1.568,
|
337 |
+
"step": 162
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 24.88888888888889,
|
341 |
+
"eval_accuracy": 0.875,
|
342 |
+
"eval_loss": 0.34730610251426697,
|
343 |
+
"eval_runtime": 1.857,
|
344 |
+
"eval_samples_per_second": 51.697,
|
345 |
+
"eval_steps_per_second": 1.616,
|
346 |
+
"step": 168
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 25.185185185185187,
|
350 |
+
"grad_norm": 27.23337745666504,
|
351 |
+
"learning_rate": 4.506172839506173e-05,
|
352 |
+
"loss": 0.2732,
|
353 |
+
"step": 170
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 25.925925925925927,
|
357 |
+
"eval_accuracy": 0.8645833333333334,
|
358 |
+
"eval_loss": 0.34611785411834717,
|
359 |
+
"eval_runtime": 1.9339,
|
360 |
+
"eval_samples_per_second": 49.641,
|
361 |
+
"eval_steps_per_second": 1.551,
|
362 |
+
"step": 175
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 26.666666666666668,
|
366 |
+
"grad_norm": 26.6937255859375,
|
367 |
+
"learning_rate": 4.4444444444444447e-05,
|
368 |
+
"loss": 0.2447,
|
369 |
+
"step": 180
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 26.962962962962962,
|
373 |
+
"eval_accuracy": 0.8958333333333334,
|
374 |
+
"eval_loss": 0.34497448801994324,
|
375 |
+
"eval_runtime": 1.9227,
|
376 |
+
"eval_samples_per_second": 49.929,
|
377 |
+
"eval_steps_per_second": 1.56,
|
378 |
+
"step": 182
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 28.0,
|
382 |
+
"eval_accuracy": 0.8958333333333334,
|
383 |
+
"eval_loss": 0.36034080386161804,
|
384 |
+
"eval_runtime": 1.8685,
|
385 |
+
"eval_samples_per_second": 51.378,
|
386 |
+
"eval_steps_per_second": 1.606,
|
387 |
+
"step": 189
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 28.14814814814815,
|
391 |
+
"grad_norm": 22.52947235107422,
|
392 |
+
"learning_rate": 4.3827160493827164e-05,
|
393 |
+
"loss": 0.2009,
|
394 |
+
"step": 190
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 28.88888888888889,
|
398 |
+
"eval_accuracy": 0.8854166666666666,
|
399 |
+
"eval_loss": 0.3214483857154846,
|
400 |
+
"eval_runtime": 1.8832,
|
401 |
+
"eval_samples_per_second": 50.977,
|
402 |
+
"eval_steps_per_second": 1.593,
|
403 |
+
"step": 195
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 29.62962962962963,
|
407 |
+
"grad_norm": 23.971797943115234,
|
408 |
+
"learning_rate": 4.3209876543209875e-05,
|
409 |
+
"loss": 0.2064,
|
410 |
+
"step": 200
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 29.925925925925927,
|
414 |
+
"eval_accuracy": 0.875,
|
415 |
+
"eval_loss": 0.30430108308792114,
|
416 |
+
"eval_runtime": 1.8494,
|
417 |
+
"eval_samples_per_second": 51.909,
|
418 |
+
"eval_steps_per_second": 1.622,
|
419 |
+
"step": 202
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 30.962962962962962,
|
423 |
+
"eval_accuracy": 0.8958333333333334,
|
424 |
+
"eval_loss": 0.2916516661643982,
|
425 |
+
"eval_runtime": 1.8828,
|
426 |
+
"eval_samples_per_second": 50.987,
|
427 |
+
"eval_steps_per_second": 1.593,
|
428 |
+
"step": 209
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 31.11111111111111,
|
432 |
+
"grad_norm": 20.200942993164062,
|
433 |
+
"learning_rate": 4.259259259259259e-05,
|
434 |
+
"loss": 0.2139,
|
435 |
+
"step": 210
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 32.0,
|
439 |
+
"eval_accuracy": 0.8958333333333334,
|
440 |
+
"eval_loss": 0.28600063920021057,
|
441 |
+
"eval_runtime": 1.903,
|
442 |
+
"eval_samples_per_second": 50.448,
|
443 |
+
"eval_steps_per_second": 1.576,
|
444 |
+
"step": 216
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 32.592592592592595,
|
448 |
+
"grad_norm": 49.91157531738281,
|
449 |
+
"learning_rate": 4.197530864197531e-05,
|
450 |
+
"loss": 0.1732,
|
451 |
+
"step": 220
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 32.888888888888886,
|
455 |
+
"eval_accuracy": 0.8333333333333334,
|
456 |
+
"eval_loss": 0.3314121663570404,
|
457 |
+
"eval_runtime": 1.8588,
|
458 |
+
"eval_samples_per_second": 51.646,
|
459 |
+
"eval_steps_per_second": 1.614,
|
460 |
+
"step": 222
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 33.925925925925924,
|
464 |
+
"eval_accuracy": 0.875,
|
465 |
+
"eval_loss": 0.339076429605484,
|
466 |
+
"eval_runtime": 1.8736,
|
467 |
+
"eval_samples_per_second": 51.238,
|
468 |
+
"eval_steps_per_second": 1.601,
|
469 |
+
"step": 229
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 34.074074074074076,
|
473 |
+
"grad_norm": 15.412144660949707,
|
474 |
+
"learning_rate": 4.135802469135803e-05,
|
475 |
+
"loss": 0.2009,
|
476 |
+
"step": 230
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 34.96296296296296,
|
480 |
+
"eval_accuracy": 0.8958333333333334,
|
481 |
+
"eval_loss": 0.3118279278278351,
|
482 |
+
"eval_runtime": 1.8956,
|
483 |
+
"eval_samples_per_second": 50.645,
|
484 |
+
"eval_steps_per_second": 1.583,
|
485 |
+
"step": 236
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 35.55555555555556,
|
489 |
+
"grad_norm": 18.91287612915039,
|
490 |
+
"learning_rate": 4.074074074074074e-05,
|
491 |
+
"loss": 0.1683,
|
492 |
+
"step": 240
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 36.0,
|
496 |
+
"eval_accuracy": 0.875,
|
497 |
+
"eval_loss": 0.3162083327770233,
|
498 |
+
"eval_runtime": 1.8823,
|
499 |
+
"eval_samples_per_second": 51.002,
|
500 |
+
"eval_steps_per_second": 1.594,
|
501 |
+
"step": 243
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 36.888888888888886,
|
505 |
+
"eval_accuracy": 0.8645833333333334,
|
506 |
+
"eval_loss": 0.3011355996131897,
|
507 |
+
"eval_runtime": 1.8611,
|
508 |
+
"eval_samples_per_second": 51.582,
|
509 |
+
"eval_steps_per_second": 1.612,
|
510 |
+
"step": 249
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 37.03703703703704,
|
514 |
+
"grad_norm": 35.87955856323242,
|
515 |
+
"learning_rate": 4.012345679012346e-05,
|
516 |
+
"loss": 0.16,
|
517 |
+
"step": 250
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 37.925925925925924,
|
521 |
+
"eval_accuracy": 0.8854166666666666,
|
522 |
+
"eval_loss": 0.2981296479701996,
|
523 |
+
"eval_runtime": 1.9139,
|
524 |
+
"eval_samples_per_second": 50.159,
|
525 |
+
"eval_steps_per_second": 1.567,
|
526 |
+
"step": 256
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 38.51851851851852,
|
530 |
+
"grad_norm": 12.093141555786133,
|
531 |
+
"learning_rate": 3.950617283950617e-05,
|
532 |
+
"loss": 0.1448,
|
533 |
+
"step": 260
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 38.96296296296296,
|
537 |
+
"eval_accuracy": 0.90625,
|
538 |
+
"eval_loss": 0.34168219566345215,
|
539 |
+
"eval_runtime": 1.8741,
|
540 |
+
"eval_samples_per_second": 51.226,
|
541 |
+
"eval_steps_per_second": 1.601,
|
542 |
+
"step": 263
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 40.0,
|
546 |
+
"grad_norm": 36.96841049194336,
|
547 |
+
"learning_rate": 3.888888888888889e-05,
|
548 |
+
"loss": 0.1272,
|
549 |
+
"step": 270
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 40.0,
|
553 |
+
"eval_accuracy": 0.8645833333333334,
|
554 |
+
"eval_loss": 0.35579848289489746,
|
555 |
+
"eval_runtime": 1.8827,
|
556 |
+
"eval_samples_per_second": 50.992,
|
557 |
+
"eval_steps_per_second": 1.593,
|
558 |
+
"step": 270
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 40.888888888888886,
|
562 |
+
"eval_accuracy": 0.8541666666666666,
|
563 |
+
"eval_loss": 0.3948463499546051,
|
564 |
+
"eval_runtime": 1.8989,
|
565 |
+
"eval_samples_per_second": 50.557,
|
566 |
+
"eval_steps_per_second": 1.58,
|
567 |
+
"step": 276
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 41.48148148148148,
|
571 |
+
"grad_norm": 17.500049591064453,
|
572 |
+
"learning_rate": 3.82716049382716e-05,
|
573 |
+
"loss": 0.1578,
|
574 |
+
"step": 280
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"epoch": 41.925925925925924,
|
578 |
+
"eval_accuracy": 0.8645833333333334,
|
579 |
+
"eval_loss": 0.36678051948547363,
|
580 |
+
"eval_runtime": 1.9696,
|
581 |
+
"eval_samples_per_second": 48.741,
|
582 |
+
"eval_steps_per_second": 1.523,
|
583 |
+
"step": 283
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 42.96296296296296,
|
587 |
+
"grad_norm": 19.923572540283203,
|
588 |
+
"learning_rate": 3.7654320987654326e-05,
|
589 |
+
"loss": 0.1604,
|
590 |
+
"step": 290
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 42.96296296296296,
|
594 |
+
"eval_accuracy": 0.8958333333333334,
|
595 |
+
"eval_loss": 0.33422672748565674,
|
596 |
+
"eval_runtime": 1.9103,
|
597 |
+
"eval_samples_per_second": 50.253,
|
598 |
+
"eval_steps_per_second": 1.57,
|
599 |
+
"step": 290
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 44.0,
|
603 |
+
"eval_accuracy": 0.9166666666666666,
|
604 |
+
"eval_loss": 0.314091295003891,
|
605 |
+
"eval_runtime": 1.8512,
|
606 |
+
"eval_samples_per_second": 51.858,
|
607 |
+
"eval_steps_per_second": 1.621,
|
608 |
+
"step": 297
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 44.44444444444444,
|
612 |
+
"grad_norm": 21.997079849243164,
|
613 |
+
"learning_rate": 3.7037037037037037e-05,
|
614 |
+
"loss": 0.1251,
|
615 |
+
"step": 300
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 44.888888888888886,
|
619 |
+
"eval_accuracy": 0.8854166666666666,
|
620 |
+
"eval_loss": 0.3266027271747589,
|
621 |
+
"eval_runtime": 1.8596,
|
622 |
+
"eval_samples_per_second": 51.625,
|
623 |
+
"eval_steps_per_second": 1.613,
|
624 |
+
"step": 303
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 45.925925925925924,
|
628 |
+
"grad_norm": 27.58420753479004,
|
629 |
+
"learning_rate": 3.6419753086419754e-05,
|
630 |
+
"loss": 0.1449,
|
631 |
+
"step": 310
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 45.925925925925924,
|
635 |
+
"eval_accuracy": 0.8854166666666666,
|
636 |
+
"eval_loss": 0.34379109740257263,
|
637 |
+
"eval_runtime": 1.9283,
|
638 |
+
"eval_samples_per_second": 49.786,
|
639 |
+
"eval_steps_per_second": 1.556,
|
640 |
+
"step": 310
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 46.96296296296296,
|
644 |
+
"eval_accuracy": 0.875,
|
645 |
+
"eval_loss": 0.3382701873779297,
|
646 |
+
"eval_runtime": 1.8689,
|
647 |
+
"eval_samples_per_second": 51.368,
|
648 |
+
"eval_steps_per_second": 1.605,
|
649 |
+
"step": 317
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 47.407407407407405,
|
653 |
+
"grad_norm": 14.891225814819336,
|
654 |
+
"learning_rate": 3.580246913580247e-05,
|
655 |
+
"loss": 0.1134,
|
656 |
+
"step": 320
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 48.0,
|
660 |
+
"eval_accuracy": 0.8958333333333334,
|
661 |
+
"eval_loss": 0.33413389325141907,
|
662 |
+
"eval_runtime": 1.887,
|
663 |
+
"eval_samples_per_second": 50.875,
|
664 |
+
"eval_steps_per_second": 1.59,
|
665 |
+
"step": 324
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 48.888888888888886,
|
669 |
+
"grad_norm": 22.530115127563477,
|
670 |
+
"learning_rate": 3.518518518518519e-05,
|
671 |
+
"loss": 0.1558,
|
672 |
+
"step": 330
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 48.888888888888886,
|
676 |
+
"eval_accuracy": 0.8958333333333334,
|
677 |
+
"eval_loss": 0.2854965031147003,
|
678 |
+
"eval_runtime": 1.9011,
|
679 |
+
"eval_samples_per_second": 50.497,
|
680 |
+
"eval_steps_per_second": 1.578,
|
681 |
+
"step": 330
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 49.925925925925924,
|
685 |
+
"eval_accuracy": 0.8958333333333334,
|
686 |
+
"eval_loss": 0.2842860221862793,
|
687 |
+
"eval_runtime": 1.9386,
|
688 |
+
"eval_samples_per_second": 49.52,
|
689 |
+
"eval_steps_per_second": 1.547,
|
690 |
+
"step": 337
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 50.370370370370374,
|
694 |
+
"grad_norm": 45.90536880493164,
|
695 |
+
"learning_rate": 3.45679012345679e-05,
|
696 |
+
"loss": 0.1433,
|
697 |
+
"step": 340
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 50.96296296296296,
|
701 |
+
"eval_accuracy": 0.84375,
|
702 |
+
"eval_loss": 0.2878771126270294,
|
703 |
+
"eval_runtime": 1.8358,
|
704 |
+
"eval_samples_per_second": 52.292,
|
705 |
+
"eval_steps_per_second": 1.634,
|
706 |
+
"step": 344
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 51.851851851851855,
|
710 |
+
"grad_norm": 30.33245849609375,
|
711 |
+
"learning_rate": 3.395061728395062e-05,
|
712 |
+
"loss": 0.1207,
|
713 |
+
"step": 350
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 52.0,
|
717 |
+
"eval_accuracy": 0.8854166666666666,
|
718 |
+
"eval_loss": 0.28866705298423767,
|
719 |
+
"eval_runtime": 1.8609,
|
720 |
+
"eval_samples_per_second": 51.587,
|
721 |
+
"eval_steps_per_second": 1.612,
|
722 |
+
"step": 351
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 52.888888888888886,
|
726 |
+
"eval_accuracy": 0.8958333333333334,
|
727 |
+
"eval_loss": 0.3173443377017975,
|
728 |
+
"eval_runtime": 1.858,
|
729 |
+
"eval_samples_per_second": 51.668,
|
730 |
+
"eval_steps_per_second": 1.615,
|
731 |
+
"step": 357
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 53.333333333333336,
|
735 |
+
"grad_norm": 14.928536415100098,
|
736 |
+
"learning_rate": 3.3333333333333335e-05,
|
737 |
+
"loss": 0.1006,
|
738 |
+
"step": 360
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 53.925925925925924,
|
742 |
+
"eval_accuracy": 0.8854166666666666,
|
743 |
+
"eval_loss": 0.2926301658153534,
|
744 |
+
"eval_runtime": 2.1238,
|
745 |
+
"eval_samples_per_second": 45.203,
|
746 |
+
"eval_steps_per_second": 1.413,
|
747 |
+
"step": 364
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 54.81481481481482,
|
751 |
+
"grad_norm": 16.707883834838867,
|
752 |
+
"learning_rate": 3.271604938271605e-05,
|
753 |
+
"loss": 0.1053,
|
754 |
+
"step": 370
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 54.96296296296296,
|
758 |
+
"eval_accuracy": 0.90625,
|
759 |
+
"eval_loss": 0.2791050672531128,
|
760 |
+
"eval_runtime": 1.8468,
|
761 |
+
"eval_samples_per_second": 51.982,
|
762 |
+
"eval_steps_per_second": 1.624,
|
763 |
+
"step": 371
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 56.0,
|
767 |
+
"eval_accuracy": 0.875,
|
768 |
+
"eval_loss": 0.3276265859603882,
|
769 |
+
"eval_runtime": 1.8761,
|
770 |
+
"eval_samples_per_second": 51.17,
|
771 |
+
"eval_steps_per_second": 1.599,
|
772 |
+
"step": 378
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 56.2962962962963,
|
776 |
+
"grad_norm": 19.896167755126953,
|
777 |
+
"learning_rate": 3.209876543209876e-05,
|
778 |
+
"loss": 0.106,
|
779 |
+
"step": 380
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 56.888888888888886,
|
783 |
+
"eval_accuracy": 0.875,
|
784 |
+
"eval_loss": 0.32238277792930603,
|
785 |
+
"eval_runtime": 1.9352,
|
786 |
+
"eval_samples_per_second": 49.608,
|
787 |
+
"eval_steps_per_second": 1.55,
|
788 |
+
"step": 384
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 57.77777777777778,
|
792 |
+
"grad_norm": 23.663541793823242,
|
793 |
+
"learning_rate": 3.148148148148148e-05,
|
794 |
+
"loss": 0.1058,
|
795 |
+
"step": 390
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 57.925925925925924,
|
799 |
+
"eval_accuracy": 0.8854166666666666,
|
800 |
+
"eval_loss": 0.33849918842315674,
|
801 |
+
"eval_runtime": 1.9952,
|
802 |
+
"eval_samples_per_second": 48.116,
|
803 |
+
"eval_steps_per_second": 1.504,
|
804 |
+
"step": 391
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 58.96296296296296,
|
808 |
+
"eval_accuracy": 0.8958333333333334,
|
809 |
+
"eval_loss": 0.34936726093292236,
|
810 |
+
"eval_runtime": 1.8826,
|
811 |
+
"eval_samples_per_second": 50.992,
|
812 |
+
"eval_steps_per_second": 1.594,
|
813 |
+
"step": 398
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 59.25925925925926,
|
817 |
+
"grad_norm": 6.200643539428711,
|
818 |
+
"learning_rate": 3.08641975308642e-05,
|
819 |
+
"loss": 0.0962,
|
820 |
+
"step": 400
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 60.0,
|
824 |
+
"eval_accuracy": 0.8854166666666666,
|
825 |
+
"eval_loss": 0.2797829508781433,
|
826 |
+
"eval_runtime": 1.8593,
|
827 |
+
"eval_samples_per_second": 51.633,
|
828 |
+
"eval_steps_per_second": 1.614,
|
829 |
+
"step": 405
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 60.74074074074074,
|
833 |
+
"grad_norm": 16.507617950439453,
|
834 |
+
"learning_rate": 3.0246913580246916e-05,
|
835 |
+
"loss": 0.0883,
|
836 |
+
"step": 410
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 60.888888888888886,
|
840 |
+
"eval_accuracy": 0.8854166666666666,
|
841 |
+
"eval_loss": 0.29343104362487793,
|
842 |
+
"eval_runtime": 1.8755,
|
843 |
+
"eval_samples_per_second": 51.187,
|
844 |
+
"eval_steps_per_second": 1.6,
|
845 |
+
"step": 411
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 61.925925925925924,
|
849 |
+
"eval_accuracy": 0.875,
|
850 |
+
"eval_loss": 0.2956160008907318,
|
851 |
+
"eval_runtime": 2.1241,
|
852 |
+
"eval_samples_per_second": 45.195,
|
853 |
+
"eval_steps_per_second": 1.412,
|
854 |
+
"step": 418
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 62.22222222222222,
|
858 |
+
"grad_norm": 19.266647338867188,
|
859 |
+
"learning_rate": 2.962962962962963e-05,
|
860 |
+
"loss": 0.084,
|
861 |
+
"step": 420
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 62.96296296296296,
|
865 |
+
"eval_accuracy": 0.8958333333333334,
|
866 |
+
"eval_loss": 0.291843980550766,
|
867 |
+
"eval_runtime": 1.864,
|
868 |
+
"eval_samples_per_second": 51.503,
|
869 |
+
"eval_steps_per_second": 1.609,
|
870 |
+
"step": 425
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 63.7037037037037,
|
874 |
+
"grad_norm": 27.770219802856445,
|
875 |
+
"learning_rate": 2.9012345679012347e-05,
|
876 |
+
"loss": 0.0808,
|
877 |
+
"step": 430
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 64.0,
|
881 |
+
"eval_accuracy": 0.8854166666666666,
|
882 |
+
"eval_loss": 0.3416362702846527,
|
883 |
+
"eval_runtime": 1.8651,
|
884 |
+
"eval_samples_per_second": 51.471,
|
885 |
+
"eval_steps_per_second": 1.608,
|
886 |
+
"step": 432
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 64.88888888888889,
|
890 |
+
"eval_accuracy": 0.8854166666666666,
|
891 |
+
"eval_loss": 0.35024556517601013,
|
892 |
+
"eval_runtime": 1.8463,
|
893 |
+
"eval_samples_per_second": 51.995,
|
894 |
+
"eval_steps_per_second": 1.625,
|
895 |
+
"step": 438
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 65.18518518518519,
|
899 |
+
"grad_norm": 14.995842933654785,
|
900 |
+
"learning_rate": 2.839506172839506e-05,
|
901 |
+
"loss": 0.0804,
|
902 |
+
"step": 440
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 65.92592592592592,
|
906 |
+
"eval_accuracy": 0.8958333333333334,
|
907 |
+
"eval_loss": 0.2984811067581177,
|
908 |
+
"eval_runtime": 2.0874,
|
909 |
+
"eval_samples_per_second": 45.989,
|
910 |
+
"eval_steps_per_second": 1.437,
|
911 |
+
"step": 445
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 66.66666666666667,
|
915 |
+
"grad_norm": 34.63008117675781,
|
916 |
+
"learning_rate": 2.777777777777778e-05,
|
917 |
+
"loss": 0.0854,
|
918 |
+
"step": 450
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 66.96296296296296,
|
922 |
+
"eval_accuracy": 0.90625,
|
923 |
+
"eval_loss": 0.2791596055030823,
|
924 |
+
"eval_runtime": 1.88,
|
925 |
+
"eval_samples_per_second": 51.064,
|
926 |
+
"eval_steps_per_second": 1.596,
|
927 |
+
"step": 452
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 68.0,
|
931 |
+
"eval_accuracy": 0.8958333333333334,
|
932 |
+
"eval_loss": 0.3643587827682495,
|
933 |
+
"eval_runtime": 1.8436,
|
934 |
+
"eval_samples_per_second": 52.072,
|
935 |
+
"eval_steps_per_second": 1.627,
|
936 |
+
"step": 459
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 68.14814814814815,
|
940 |
+
"grad_norm": 32.28718566894531,
|
941 |
+
"learning_rate": 2.7160493827160493e-05,
|
942 |
+
"loss": 0.0887,
|
943 |
+
"step": 460
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 68.88888888888889,
|
947 |
+
"eval_accuracy": 0.90625,
|
948 |
+
"eval_loss": 0.2684231400489807,
|
949 |
+
"eval_runtime": 1.8572,
|
950 |
+
"eval_samples_per_second": 51.691,
|
951 |
+
"eval_steps_per_second": 1.615,
|
952 |
+
"step": 465
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 69.62962962962963,
|
956 |
+
"grad_norm": 22.44804573059082,
|
957 |
+
"learning_rate": 2.654320987654321e-05,
|
958 |
+
"loss": 0.0671,
|
959 |
+
"step": 470
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 69.92592592592592,
|
963 |
+
"eval_accuracy": 0.8958333333333334,
|
964 |
+
"eval_loss": 0.28022265434265137,
|
965 |
+
"eval_runtime": 2.1506,
|
966 |
+
"eval_samples_per_second": 44.638,
|
967 |
+
"eval_steps_per_second": 1.395,
|
968 |
+
"step": 472
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 70.96296296296296,
|
972 |
+
"eval_accuracy": 0.90625,
|
973 |
+
"eval_loss": 0.2900524437427521,
|
974 |
+
"eval_runtime": 1.859,
|
975 |
+
"eval_samples_per_second": 51.641,
|
976 |
+
"eval_steps_per_second": 1.614,
|
977 |
+
"step": 479
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 71.11111111111111,
|
981 |
+
"grad_norm": 4.379269123077393,
|
982 |
+
"learning_rate": 2.5925925925925925e-05,
|
983 |
+
"loss": 0.0704,
|
984 |
+
"step": 480
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 72.0,
|
988 |
+
"eval_accuracy": 0.8854166666666666,
|
989 |
+
"eval_loss": 0.3098466694355011,
|
990 |
+
"eval_runtime": 1.838,
|
991 |
+
"eval_samples_per_second": 52.23,
|
992 |
+
"eval_steps_per_second": 1.632,
|
993 |
+
"step": 486
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 72.5925925925926,
|
997 |
+
"grad_norm": 17.398576736450195,
|
998 |
+
"learning_rate": 2.5308641975308646e-05,
|
999 |
+
"loss": 0.0802,
|
1000 |
+
"step": 490
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 72.88888888888889,
|
1004 |
+
"eval_accuracy": 0.8854166666666666,
|
1005 |
+
"eval_loss": 0.2960352897644043,
|
1006 |
+
"eval_runtime": 1.867,
|
1007 |
+
"eval_samples_per_second": 51.421,
|
1008 |
+
"eval_steps_per_second": 1.607,
|
1009 |
+
"step": 492
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 73.92592592592592,
|
1013 |
+
"eval_accuracy": 0.875,
|
1014 |
+
"eval_loss": 0.2757139503955841,
|
1015 |
+
"eval_runtime": 2.0356,
|
1016 |
+
"eval_samples_per_second": 47.161,
|
1017 |
+
"eval_steps_per_second": 1.474,
|
1018 |
+
"step": 499
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 74.07407407407408,
|
1022 |
+
"grad_norm": 18.339569091796875,
|
1023 |
+
"learning_rate": 2.4691358024691357e-05,
|
1024 |
+
"loss": 0.09,
|
1025 |
+
"step": 500
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 74.96296296296296,
|
1029 |
+
"eval_accuracy": 0.8645833333333334,
|
1030 |
+
"eval_loss": 0.31044331192970276,
|
1031 |
+
"eval_runtime": 1.8732,
|
1032 |
+
"eval_samples_per_second": 51.249,
|
1033 |
+
"eval_steps_per_second": 1.602,
|
1034 |
+
"step": 506
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 75.55555555555556,
|
1038 |
+
"grad_norm": 8.075996398925781,
|
1039 |
+
"learning_rate": 2.4074074074074074e-05,
|
1040 |
+
"loss": 0.0772,
|
1041 |
+
"step": 510
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 76.0,
|
1045 |
+
"eval_accuracy": 0.8958333333333334,
|
1046 |
+
"eval_loss": 0.3120499849319458,
|
1047 |
+
"eval_runtime": 1.9108,
|
1048 |
+
"eval_samples_per_second": 50.239,
|
1049 |
+
"eval_steps_per_second": 1.57,
|
1050 |
+
"step": 513
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 76.88888888888889,
|
1054 |
+
"eval_accuracy": 0.9166666666666666,
|
1055 |
+
"eval_loss": 0.2803463637828827,
|
1056 |
+
"eval_runtime": 1.8689,
|
1057 |
+
"eval_samples_per_second": 51.368,
|
1058 |
+
"eval_steps_per_second": 1.605,
|
1059 |
+
"step": 519
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 77.03703703703704,
|
1063 |
+
"grad_norm": 3.0919692516326904,
|
1064 |
+
"learning_rate": 2.345679012345679e-05,
|
1065 |
+
"loss": 0.0725,
|
1066 |
+
"step": 520
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 77.92592592592592,
|
1070 |
+
"eval_accuracy": 0.8958333333333334,
|
1071 |
+
"eval_loss": 0.28252843022346497,
|
1072 |
+
"eval_runtime": 1.9144,
|
1073 |
+
"eval_samples_per_second": 50.146,
|
1074 |
+
"eval_steps_per_second": 1.567,
|
1075 |
+
"step": 526
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 78.51851851851852,
|
1079 |
+
"grad_norm": 14.103160858154297,
|
1080 |
+
"learning_rate": 2.2839506172839506e-05,
|
1081 |
+
"loss": 0.0684,
|
1082 |
+
"step": 530
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 78.96296296296296,
|
1086 |
+
"eval_accuracy": 0.875,
|
1087 |
+
"eval_loss": 0.325451523065567,
|
1088 |
+
"eval_runtime": 1.8932,
|
1089 |
+
"eval_samples_per_second": 50.708,
|
1090 |
+
"eval_steps_per_second": 1.585,
|
1091 |
+
"step": 533
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 80.0,
|
1095 |
+
"grad_norm": 25.228979110717773,
|
1096 |
+
"learning_rate": 2.2222222222222223e-05,
|
1097 |
+
"loss": 0.0732,
|
1098 |
+
"step": 540
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 80.0,
|
1102 |
+
"eval_accuracy": 0.90625,
|
1103 |
+
"eval_loss": 0.3091324269771576,
|
1104 |
+
"eval_runtime": 1.8455,
|
1105 |
+
"eval_samples_per_second": 52.019,
|
1106 |
+
"eval_steps_per_second": 1.626,
|
1107 |
+
"step": 540
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 80.88888888888889,
|
1111 |
+
"eval_accuracy": 0.9166666666666666,
|
1112 |
+
"eval_loss": 0.2875919044017792,
|
1113 |
+
"eval_runtime": 1.8878,
|
1114 |
+
"eval_samples_per_second": 50.852,
|
1115 |
+
"eval_steps_per_second": 1.589,
|
1116 |
+
"step": 546
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 81.48148148148148,
|
1120 |
+
"grad_norm": 9.110090255737305,
|
1121 |
+
"learning_rate": 2.1604938271604937e-05,
|
1122 |
+
"loss": 0.0743,
|
1123 |
+
"step": 550
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 81.92592592592592,
|
1127 |
+
"eval_accuracy": 0.8645833333333334,
|
1128 |
+
"eval_loss": 0.30346551537513733,
|
1129 |
+
"eval_runtime": 2.0498,
|
1130 |
+
"eval_samples_per_second": 46.834,
|
1131 |
+
"eval_steps_per_second": 1.464,
|
1132 |
+
"step": 553
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 82.96296296296296,
|
1136 |
+
"grad_norm": 23.57141876220703,
|
1137 |
+
"learning_rate": 2.0987654320987655e-05,
|
1138 |
+
"loss": 0.0807,
|
1139 |
+
"step": 560
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 82.96296296296296,
|
1143 |
+
"eval_accuracy": 0.9270833333333334,
|
1144 |
+
"eval_loss": 0.2750629186630249,
|
1145 |
+
"eval_runtime": 1.8436,
|
1146 |
+
"eval_samples_per_second": 52.073,
|
1147 |
+
"eval_steps_per_second": 1.627,
|
1148 |
+
"step": 560
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 84.0,
|
1152 |
+
"eval_accuracy": 0.9166666666666666,
|
1153 |
+
"eval_loss": 0.2656916677951813,
|
1154 |
+
"eval_runtime": 1.884,
|
1155 |
+
"eval_samples_per_second": 50.955,
|
1156 |
+
"eval_steps_per_second": 1.592,
|
1157 |
+
"step": 567
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 84.44444444444444,
|
1161 |
+
"grad_norm": 7.4042277336120605,
|
1162 |
+
"learning_rate": 2.037037037037037e-05,
|
1163 |
+
"loss": 0.0799,
|
1164 |
+
"step": 570
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 84.88888888888889,
|
1168 |
+
"eval_accuracy": 0.90625,
|
1169 |
+
"eval_loss": 0.2810324728488922,
|
1170 |
+
"eval_runtime": 1.8651,
|
1171 |
+
"eval_samples_per_second": 51.472,
|
1172 |
+
"eval_steps_per_second": 1.608,
|
1173 |
+
"step": 573
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 85.92592592592592,
|
1177 |
+
"grad_norm": 9.805841445922852,
|
1178 |
+
"learning_rate": 1.9753086419753087e-05,
|
1179 |
+
"loss": 0.0632,
|
1180 |
+
"step": 580
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 85.92592592592592,
|
1184 |
+
"eval_accuracy": 0.90625,
|
1185 |
+
"eval_loss": 0.303717702627182,
|
1186 |
+
"eval_runtime": 1.9401,
|
1187 |
+
"eval_samples_per_second": 49.481,
|
1188 |
+
"eval_steps_per_second": 1.546,
|
1189 |
+
"step": 580
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 86.96296296296296,
|
1193 |
+
"eval_accuracy": 0.90625,
|
1194 |
+
"eval_loss": 0.33565008640289307,
|
1195 |
+
"eval_runtime": 1.8817,
|
1196 |
+
"eval_samples_per_second": 51.018,
|
1197 |
+
"eval_steps_per_second": 1.594,
|
1198 |
+
"step": 587
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 87.4074074074074,
|
1202 |
+
"grad_norm": 27.298439025878906,
|
1203 |
+
"learning_rate": 1.91358024691358e-05,
|
1204 |
+
"loss": 0.0579,
|
1205 |
+
"step": 590
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 88.0,
|
1209 |
+
"eval_accuracy": 0.8645833333333334,
|
1210 |
+
"eval_loss": 0.3170994818210602,
|
1211 |
+
"eval_runtime": 1.8439,
|
1212 |
+
"eval_samples_per_second": 52.063,
|
1213 |
+
"eval_steps_per_second": 1.627,
|
1214 |
+
"step": 594
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 88.88888888888889,
|
1218 |
+
"grad_norm": 12.730273246765137,
|
1219 |
+
"learning_rate": 1.8518518518518518e-05,
|
1220 |
+
"loss": 0.0593,
|
1221 |
+
"step": 600
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 88.88888888888889,
|
1225 |
+
"eval_accuracy": 0.8854166666666666,
|
1226 |
+
"eval_loss": 0.32229921221733093,
|
1227 |
+
"eval_runtime": 1.8672,
|
1228 |
+
"eval_samples_per_second": 51.414,
|
1229 |
+
"eval_steps_per_second": 1.607,
|
1230 |
+
"step": 600
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 89.92592592592592,
|
1234 |
+
"eval_accuracy": 0.8958333333333334,
|
1235 |
+
"eval_loss": 0.29770705103874207,
|
1236 |
+
"eval_runtime": 1.9546,
|
1237 |
+
"eval_samples_per_second": 49.115,
|
1238 |
+
"eval_steps_per_second": 1.535,
|
1239 |
+
"step": 607
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 90.37037037037037,
|
1243 |
+
"grad_norm": 7.479738712310791,
|
1244 |
+
"learning_rate": 1.7901234567901236e-05,
|
1245 |
+
"loss": 0.0418,
|
1246 |
+
"step": 610
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 90.96296296296296,
|
1250 |
+
"eval_accuracy": 0.90625,
|
1251 |
+
"eval_loss": 0.3380300998687744,
|
1252 |
+
"eval_runtime": 1.8381,
|
1253 |
+
"eval_samples_per_second": 52.228,
|
1254 |
+
"eval_steps_per_second": 1.632,
|
1255 |
+
"step": 614
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 91.85185185185185,
|
1259 |
+
"grad_norm": 19.313344955444336,
|
1260 |
+
"learning_rate": 1.728395061728395e-05,
|
1261 |
+
"loss": 0.0647,
|
1262 |
+
"step": 620
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 92.0,
|
1266 |
+
"eval_accuracy": 0.875,
|
1267 |
+
"eval_loss": 0.28629523515701294,
|
1268 |
+
"eval_runtime": 1.9227,
|
1269 |
+
"eval_samples_per_second": 49.928,
|
1270 |
+
"eval_steps_per_second": 1.56,
|
1271 |
+
"step": 621
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 92.88888888888889,
|
1275 |
+
"eval_accuracy": 0.9166666666666666,
|
1276 |
+
"eval_loss": 0.2898975610733032,
|
1277 |
+
"eval_runtime": 1.8782,
|
1278 |
+
"eval_samples_per_second": 51.114,
|
1279 |
+
"eval_steps_per_second": 1.597,
|
1280 |
+
"step": 627
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 93.33333333333333,
|
1284 |
+
"grad_norm": 11.266192436218262,
|
1285 |
+
"learning_rate": 1.6666666666666667e-05,
|
1286 |
+
"loss": 0.0649,
|
1287 |
+
"step": 630
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 93.92592592592592,
|
1291 |
+
"eval_accuracy": 0.8958333333333334,
|
1292 |
+
"eval_loss": 0.2853105962276459,
|
1293 |
+
"eval_runtime": 1.9709,
|
1294 |
+
"eval_samples_per_second": 48.708,
|
1295 |
+
"eval_steps_per_second": 1.522,
|
1296 |
+
"step": 634
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"epoch": 94.81481481481481,
|
1300 |
+
"grad_norm": 9.165306091308594,
|
1301 |
+
"learning_rate": 1.604938271604938e-05,
|
1302 |
+
"loss": 0.0538,
|
1303 |
+
"step": 640
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 94.96296296296296,
|
1307 |
+
"eval_accuracy": 0.8854166666666666,
|
1308 |
+
"eval_loss": 0.24523399770259857,
|
1309 |
+
"eval_runtime": 1.9081,
|
1310 |
+
"eval_samples_per_second": 50.312,
|
1311 |
+
"eval_steps_per_second": 1.572,
|
1312 |
+
"step": 641
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 96.0,
|
1316 |
+
"eval_accuracy": 0.8958333333333334,
|
1317 |
+
"eval_loss": 0.2568932771682739,
|
1318 |
+
"eval_runtime": 1.8246,
|
1319 |
+
"eval_samples_per_second": 52.614,
|
1320 |
+
"eval_steps_per_second": 1.644,
|
1321 |
+
"step": 648
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 96.29629629629629,
|
1325 |
+
"grad_norm": 6.884490489959717,
|
1326 |
+
"learning_rate": 1.54320987654321e-05,
|
1327 |
+
"loss": 0.0483,
|
1328 |
+
"step": 650
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 96.88888888888889,
|
1332 |
+
"eval_accuracy": 0.90625,
|
1333 |
+
"eval_loss": 0.26870599389076233,
|
1334 |
+
"eval_runtime": 1.8508,
|
1335 |
+
"eval_samples_per_second": 51.87,
|
1336 |
+
"eval_steps_per_second": 1.621,
|
1337 |
+
"step": 654
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 97.77777777777777,
|
1341 |
+
"grad_norm": 10.973348617553711,
|
1342 |
+
"learning_rate": 1.4814814814814815e-05,
|
1343 |
+
"loss": 0.0597,
|
1344 |
+
"step": 660
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 97.92592592592592,
|
1348 |
+
"eval_accuracy": 0.875,
|
1349 |
+
"eval_loss": 0.3083449900150299,
|
1350 |
+
"eval_runtime": 1.991,
|
1351 |
+
"eval_samples_per_second": 48.217,
|
1352 |
+
"eval_steps_per_second": 1.507,
|
1353 |
+
"step": 661
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 98.96296296296296,
|
1357 |
+
"eval_accuracy": 0.8645833333333334,
|
1358 |
+
"eval_loss": 0.2929399311542511,
|
1359 |
+
"eval_runtime": 1.8639,
|
1360 |
+
"eval_samples_per_second": 51.505,
|
1361 |
+
"eval_steps_per_second": 1.61,
|
1362 |
+
"step": 668
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 99.25925925925925,
|
1366 |
+
"grad_norm": 7.356732368469238,
|
1367 |
+
"learning_rate": 1.419753086419753e-05,
|
1368 |
+
"loss": 0.0544,
|
1369 |
+
"step": 670
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"epoch": 100.0,
|
1373 |
+
"eval_accuracy": 0.875,
|
1374 |
+
"eval_loss": 0.32528772950172424,
|
1375 |
+
"eval_runtime": 1.9688,
|
1376 |
+
"eval_samples_per_second": 48.76,
|
1377 |
+
"eval_steps_per_second": 1.524,
|
1378 |
+
"step": 675
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 100.74074074074075,
|
1382 |
+
"grad_norm": 5.596048831939697,
|
1383 |
+
"learning_rate": 1.3580246913580247e-05,
|
1384 |
+
"loss": 0.0585,
|
1385 |
+
"step": 680
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 100.88888888888889,
|
1389 |
+
"eval_accuracy": 0.8645833333333334,
|
1390 |
+
"eval_loss": 0.33938369154930115,
|
1391 |
+
"eval_runtime": 1.8565,
|
1392 |
+
"eval_samples_per_second": 51.711,
|
1393 |
+
"eval_steps_per_second": 1.616,
|
1394 |
+
"step": 681
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 101.92592592592592,
|
1398 |
+
"eval_accuracy": 0.8541666666666666,
|
1399 |
+
"eval_loss": 0.37479040026664734,
|
1400 |
+
"eval_runtime": 2.0134,
|
1401 |
+
"eval_samples_per_second": 47.68,
|
1402 |
+
"eval_steps_per_second": 1.49,
|
1403 |
+
"step": 688
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 102.22222222222223,
|
1407 |
+
"grad_norm": 13.269804000854492,
|
1408 |
+
"learning_rate": 1.2962962962962962e-05,
|
1409 |
+
"loss": 0.0563,
|
1410 |
+
"step": 690
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 102.96296296296296,
|
1414 |
+
"eval_accuracy": 0.8645833333333334,
|
1415 |
+
"eval_loss": 0.38897252082824707,
|
1416 |
+
"eval_runtime": 1.8519,
|
1417 |
+
"eval_samples_per_second": 51.838,
|
1418 |
+
"eval_steps_per_second": 1.62,
|
1419 |
+
"step": 695
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 103.70370370370371,
|
1423 |
+
"grad_norm": 16.924348831176758,
|
1424 |
+
"learning_rate": 1.2345679012345678e-05,
|
1425 |
+
"loss": 0.059,
|
1426 |
+
"step": 700
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 104.0,
|
1430 |
+
"eval_accuracy": 0.8854166666666666,
|
1431 |
+
"eval_loss": 0.3460318148136139,
|
1432 |
+
"eval_runtime": 1.8788,
|
1433 |
+
"eval_samples_per_second": 51.096,
|
1434 |
+
"eval_steps_per_second": 1.597,
|
1435 |
+
"step": 702
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 104.88888888888889,
|
1439 |
+
"eval_accuracy": 0.875,
|
1440 |
+
"eval_loss": 0.33083054423332214,
|
1441 |
+
"eval_runtime": 1.9045,
|
1442 |
+
"eval_samples_per_second": 50.406,
|
1443 |
+
"eval_steps_per_second": 1.575,
|
1444 |
+
"step": 708
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 105.18518518518519,
|
1448 |
+
"grad_norm": 34.068790435791016,
|
1449 |
+
"learning_rate": 1.1728395061728396e-05,
|
1450 |
+
"loss": 0.0601,
|
1451 |
+
"step": 710
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 105.92592592592592,
|
1455 |
+
"eval_accuracy": 0.875,
|
1456 |
+
"eval_loss": 0.3228204846382141,
|
1457 |
+
"eval_runtime": 1.8931,
|
1458 |
+
"eval_samples_per_second": 50.711,
|
1459 |
+
"eval_steps_per_second": 1.585,
|
1460 |
+
"step": 715
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 106.66666666666667,
|
1464 |
+
"grad_norm": 28.148273468017578,
|
1465 |
+
"learning_rate": 1.1111111111111112e-05,
|
1466 |
+
"loss": 0.0512,
|
1467 |
+
"step": 720
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 106.96296296296296,
|
1471 |
+
"eval_accuracy": 0.8854166666666666,
|
1472 |
+
"eval_loss": 0.3189867436885834,
|
1473 |
+
"eval_runtime": 1.9115,
|
1474 |
+
"eval_samples_per_second": 50.224,
|
1475 |
+
"eval_steps_per_second": 1.569,
|
1476 |
+
"step": 722
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 108.0,
|
1480 |
+
"eval_accuracy": 0.875,
|
1481 |
+
"eval_loss": 0.30278849601745605,
|
1482 |
+
"eval_runtime": 1.8687,
|
1483 |
+
"eval_samples_per_second": 51.373,
|
1484 |
+
"eval_steps_per_second": 1.605,
|
1485 |
+
"step": 729
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 108.14814814814815,
|
1489 |
+
"grad_norm": 8.840377807617188,
|
1490 |
+
"learning_rate": 1.0493827160493827e-05,
|
1491 |
+
"loss": 0.0346,
|
1492 |
+
"step": 730
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 108.88888888888889,
|
1496 |
+
"eval_accuracy": 0.90625,
|
1497 |
+
"eval_loss": 0.3065723478794098,
|
1498 |
+
"eval_runtime": 1.849,
|
1499 |
+
"eval_samples_per_second": 51.919,
|
1500 |
+
"eval_steps_per_second": 1.622,
|
1501 |
+
"step": 735
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 109.62962962962963,
|
1505 |
+
"grad_norm": 5.847916126251221,
|
1506 |
+
"learning_rate": 9.876543209876543e-06,
|
1507 |
+
"loss": 0.0434,
|
1508 |
+
"step": 740
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 109.92592592592592,
|
1512 |
+
"eval_accuracy": 0.90625,
|
1513 |
+
"eval_loss": 0.29524290561676025,
|
1514 |
+
"eval_runtime": 1.8637,
|
1515 |
+
"eval_samples_per_second": 51.511,
|
1516 |
+
"eval_steps_per_second": 1.61,
|
1517 |
+
"step": 742
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 110.96296296296296,
|
1521 |
+
"eval_accuracy": 0.90625,
|
1522 |
+
"eval_loss": 0.3053508698940277,
|
1523 |
+
"eval_runtime": 1.875,
|
1524 |
+
"eval_samples_per_second": 51.201,
|
1525 |
+
"eval_steps_per_second": 1.6,
|
1526 |
+
"step": 749
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 111.11111111111111,
|
1530 |
+
"grad_norm": 13.934989929199219,
|
1531 |
+
"learning_rate": 9.259259259259259e-06,
|
1532 |
+
"loss": 0.0466,
|
1533 |
+
"step": 750
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 112.0,
|
1537 |
+
"eval_accuracy": 0.8958333333333334,
|
1538 |
+
"eval_loss": 0.30871471762657166,
|
1539 |
+
"eval_runtime": 1.8837,
|
1540 |
+
"eval_samples_per_second": 50.965,
|
1541 |
+
"eval_steps_per_second": 1.593,
|
1542 |
+
"step": 756
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 112.5925925925926,
|
1546 |
+
"grad_norm": 4.37272834777832,
|
1547 |
+
"learning_rate": 8.641975308641975e-06,
|
1548 |
+
"loss": 0.0402,
|
1549 |
+
"step": 760
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 112.88888888888889,
|
1553 |
+
"eval_accuracy": 0.875,
|
1554 |
+
"eval_loss": 0.3211623728275299,
|
1555 |
+
"eval_runtime": 1.8685,
|
1556 |
+
"eval_samples_per_second": 51.377,
|
1557 |
+
"eval_steps_per_second": 1.606,
|
1558 |
+
"step": 762
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"epoch": 113.92592592592592,
|
1562 |
+
"eval_accuracy": 0.8854166666666666,
|
1563 |
+
"eval_loss": 0.3235282897949219,
|
1564 |
+
"eval_runtime": 1.8591,
|
1565 |
+
"eval_samples_per_second": 51.637,
|
1566 |
+
"eval_steps_per_second": 1.614,
|
1567 |
+
"step": 769
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 114.07407407407408,
|
1571 |
+
"grad_norm": 17.743671417236328,
|
1572 |
+
"learning_rate": 8.02469135802469e-06,
|
1573 |
+
"loss": 0.0491,
|
1574 |
+
"step": 770
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 114.96296296296296,
|
1578 |
+
"eval_accuracy": 0.90625,
|
1579 |
+
"eval_loss": 0.3134639263153076,
|
1580 |
+
"eval_runtime": 1.8752,
|
1581 |
+
"eval_samples_per_second": 51.195,
|
1582 |
+
"eval_steps_per_second": 1.6,
|
1583 |
+
"step": 776
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"epoch": 115.55555555555556,
|
1587 |
+
"grad_norm": 14.649134635925293,
|
1588 |
+
"learning_rate": 7.4074074074074075e-06,
|
1589 |
+
"loss": 0.0495,
|
1590 |
+
"step": 780
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"epoch": 116.0,
|
1594 |
+
"eval_accuracy": 0.8958333333333334,
|
1595 |
+
"eval_loss": 0.2991209924221039,
|
1596 |
+
"eval_runtime": 1.9038,
|
1597 |
+
"eval_samples_per_second": 50.426,
|
1598 |
+
"eval_steps_per_second": 1.576,
|
1599 |
+
"step": 783
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 116.88888888888889,
|
1603 |
+
"eval_accuracy": 0.8854166666666666,
|
1604 |
+
"eval_loss": 0.3050777018070221,
|
1605 |
+
"eval_runtime": 1.8271,
|
1606 |
+
"eval_samples_per_second": 52.541,
|
1607 |
+
"eval_steps_per_second": 1.642,
|
1608 |
+
"step": 789
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 117.03703703703704,
|
1612 |
+
"grad_norm": 14.181517601013184,
|
1613 |
+
"learning_rate": 6.790123456790123e-06,
|
1614 |
+
"loss": 0.0536,
|
1615 |
+
"step": 790
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 117.92592592592592,
|
1619 |
+
"eval_accuracy": 0.875,
|
1620 |
+
"eval_loss": 0.33390840888023376,
|
1621 |
+
"eval_runtime": 1.8859,
|
1622 |
+
"eval_samples_per_second": 50.904,
|
1623 |
+
"eval_steps_per_second": 1.591,
|
1624 |
+
"step": 796
|
1625 |
+
},
|
1626 |
+
{
|
1627 |
+
"epoch": 118.51851851851852,
|
1628 |
+
"grad_norm": 13.237271308898926,
|
1629 |
+
"learning_rate": 6.172839506172839e-06,
|
1630 |
+
"loss": 0.0419,
|
1631 |
+
"step": 800
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 118.96296296296296,
|
1635 |
+
"eval_accuracy": 0.8645833333333334,
|
1636 |
+
"eval_loss": 0.3370848596096039,
|
1637 |
+
"eval_runtime": 1.8605,
|
1638 |
+
"eval_samples_per_second": 51.6,
|
1639 |
+
"eval_steps_per_second": 1.612,
|
1640 |
+
"step": 803
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 120.0,
|
1644 |
+
"grad_norm": 5.592768669128418,
|
1645 |
+
"learning_rate": 5.555555555555556e-06,
|
1646 |
+
"loss": 0.0333,
|
1647 |
+
"step": 810
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 120.0,
|
1651 |
+
"eval_accuracy": 0.8645833333333334,
|
1652 |
+
"eval_loss": 0.3375813066959381,
|
1653 |
+
"eval_runtime": 1.8801,
|
1654 |
+
"eval_samples_per_second": 51.06,
|
1655 |
+
"eval_steps_per_second": 1.596,
|
1656 |
+
"step": 810
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 120.88888888888889,
|
1660 |
+
"eval_accuracy": 0.8645833333333334,
|
1661 |
+
"eval_loss": 0.33790695667266846,
|
1662 |
+
"eval_runtime": 1.8455,
|
1663 |
+
"eval_samples_per_second": 52.018,
|
1664 |
+
"eval_steps_per_second": 1.626,
|
1665 |
+
"step": 816
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 121.48148148148148,
|
1669 |
+
"grad_norm": 4.372032165527344,
|
1670 |
+
"learning_rate": 4.938271604938272e-06,
|
1671 |
+
"loss": 0.0376,
|
1672 |
+
"step": 820
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 121.92592592592592,
|
1676 |
+
"eval_accuracy": 0.8541666666666666,
|
1677 |
+
"eval_loss": 0.337320476770401,
|
1678 |
+
"eval_runtime": 1.8367,
|
1679 |
+
"eval_samples_per_second": 52.267,
|
1680 |
+
"eval_steps_per_second": 1.633,
|
1681 |
+
"step": 823
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"epoch": 122.96296296296296,
|
1685 |
+
"grad_norm": 10.392346382141113,
|
1686 |
+
"learning_rate": 4.3209876543209875e-06,
|
1687 |
+
"loss": 0.0397,
|
1688 |
+
"step": 830
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 122.96296296296296,
|
1692 |
+
"eval_accuracy": 0.8645833333333334,
|
1693 |
+
"eval_loss": 0.34366607666015625,
|
1694 |
+
"eval_runtime": 1.8522,
|
1695 |
+
"eval_samples_per_second": 51.831,
|
1696 |
+
"eval_steps_per_second": 1.62,
|
1697 |
+
"step": 830
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 124.0,
|
1701 |
+
"eval_accuracy": 0.8645833333333334,
|
1702 |
+
"eval_loss": 0.35845816135406494,
|
1703 |
+
"eval_runtime": 1.8547,
|
1704 |
+
"eval_samples_per_second": 51.76,
|
1705 |
+
"eval_steps_per_second": 1.618,
|
1706 |
+
"step": 837
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 124.44444444444444,
|
1710 |
+
"grad_norm": 5.668208122253418,
|
1711 |
+
"learning_rate": 3.7037037037037037e-06,
|
1712 |
+
"loss": 0.0299,
|
1713 |
+
"step": 840
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 124.88888888888889,
|
1717 |
+
"eval_accuracy": 0.8645833333333334,
|
1718 |
+
"eval_loss": 0.3514343202114105,
|
1719 |
+
"eval_runtime": 1.8661,
|
1720 |
+
"eval_samples_per_second": 51.445,
|
1721 |
+
"eval_steps_per_second": 1.608,
|
1722 |
+
"step": 843
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 125.92592592592592,
|
1726 |
+
"grad_norm": 21.28321647644043,
|
1727 |
+
"learning_rate": 3.0864197530864196e-06,
|
1728 |
+
"loss": 0.0468,
|
1729 |
+
"step": 850
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 125.92592592592592,
|
1733 |
+
"eval_accuracy": 0.8645833333333334,
|
1734 |
+
"eval_loss": 0.3397478759288788,
|
1735 |
+
"eval_runtime": 1.8626,
|
1736 |
+
"eval_samples_per_second": 51.54,
|
1737 |
+
"eval_steps_per_second": 1.611,
|
1738 |
+
"step": 850
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 126.96296296296296,
|
1742 |
+
"eval_accuracy": 0.8541666666666666,
|
1743 |
+
"eval_loss": 0.33162921667099,
|
1744 |
+
"eval_runtime": 1.9031,
|
1745 |
+
"eval_samples_per_second": 50.444,
|
1746 |
+
"eval_steps_per_second": 1.576,
|
1747 |
+
"step": 857
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 127.4074074074074,
|
1751 |
+
"grad_norm": 2.5001776218414307,
|
1752 |
+
"learning_rate": 2.469135802469136e-06,
|
1753 |
+
"loss": 0.0351,
|
1754 |
+
"step": 860
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 128.0,
|
1758 |
+
"eval_accuracy": 0.8645833333333334,
|
1759 |
+
"eval_loss": 0.33344319462776184,
|
1760 |
+
"eval_runtime": 1.8441,
|
1761 |
+
"eval_samples_per_second": 52.058,
|
1762 |
+
"eval_steps_per_second": 1.627,
|
1763 |
+
"step": 864
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 128.88888888888889,
|
1767 |
+
"grad_norm": 9.004130363464355,
|
1768 |
+
"learning_rate": 1.8518518518518519e-06,
|
1769 |
+
"loss": 0.0439,
|
1770 |
+
"step": 870
|
1771 |
+
},
|
1772 |
+
{
|
1773 |
+
"epoch": 128.88888888888889,
|
1774 |
+
"eval_accuracy": 0.8645833333333334,
|
1775 |
+
"eval_loss": 0.3323952555656433,
|
1776 |
+
"eval_runtime": 1.8475,
|
1777 |
+
"eval_samples_per_second": 51.963,
|
1778 |
+
"eval_steps_per_second": 1.624,
|
1779 |
+
"step": 870
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 129.92592592592592,
|
1783 |
+
"eval_accuracy": 0.8645833333333334,
|
1784 |
+
"eval_loss": 0.3289691209793091,
|
1785 |
+
"eval_runtime": 1.8689,
|
1786 |
+
"eval_samples_per_second": 51.368,
|
1787 |
+
"eval_steps_per_second": 1.605,
|
1788 |
+
"step": 877
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 130.37037037037038,
|
1792 |
+
"grad_norm": 12.271383285522461,
|
1793 |
+
"learning_rate": 1.234567901234568e-06,
|
1794 |
+
"loss": 0.0478,
|
1795 |
+
"step": 880
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 130.96296296296296,
|
1799 |
+
"eval_accuracy": 0.875,
|
1800 |
+
"eval_loss": 0.325620174407959,
|
1801 |
+
"eval_runtime": 1.8869,
|
1802 |
+
"eval_samples_per_second": 50.876,
|
1803 |
+
"eval_steps_per_second": 1.59,
|
1804 |
+
"step": 884
|
1805 |
+
},
|
1806 |
+
{
|
1807 |
+
"epoch": 131.85185185185185,
|
1808 |
+
"grad_norm": 8.459063529968262,
|
1809 |
+
"learning_rate": 6.17283950617284e-07,
|
1810 |
+
"loss": 0.0434,
|
1811 |
+
"step": 890
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 132.0,
|
1815 |
+
"eval_accuracy": 0.875,
|
1816 |
+
"eval_loss": 0.32529863715171814,
|
1817 |
+
"eval_runtime": 1.8653,
|
1818 |
+
"eval_samples_per_second": 51.466,
|
1819 |
+
"eval_steps_per_second": 1.608,
|
1820 |
+
"step": 891
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 132.88888888888889,
|
1824 |
+
"eval_accuracy": 0.875,
|
1825 |
+
"eval_loss": 0.325122594833374,
|
1826 |
+
"eval_runtime": 1.835,
|
1827 |
+
"eval_samples_per_second": 52.315,
|
1828 |
+
"eval_steps_per_second": 1.635,
|
1829 |
+
"step": 897
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 133.33333333333334,
|
1833 |
+
"grad_norm": 9.571310997009277,
|
1834 |
+
"learning_rate": 0.0,
|
1835 |
+
"loss": 0.0374,
|
1836 |
+
"step": 900
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 133.33333333333334,
|
1840 |
+
"eval_accuracy": 0.875,
|
1841 |
+
"eval_loss": 0.3251601457595825,
|
1842 |
+
"eval_runtime": 1.8591,
|
1843 |
+
"eval_samples_per_second": 51.637,
|
1844 |
+
"eval_steps_per_second": 1.614,
|
1845 |
+
"step": 900
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 133.33333333333334,
|
1849 |
+
"step": 900,
|
1850 |
+
"total_flos": 2.900008367869133e+18,
|
1851 |
+
"train_loss": 0.254776107304626,
|
1852 |
+
"train_runtime": 3168.008,
|
1853 |
+
"train_samples_per_second": 40.909,
|
1854 |
+
"train_steps_per_second": 0.284
|
1855 |
+
}
|
1856 |
+
],
|
1857 |
+
"logging_steps": 10,
|
1858 |
+
"max_steps": 900,
|
1859 |
+
"num_input_tokens_seen": 0,
|
1860 |
+
"num_train_epochs": 150,
|
1861 |
+
"save_steps": 500,
|
1862 |
+
"stateful_callbacks": {
|
1863 |
+
"TrainerControl": {
|
1864 |
+
"args": {
|
1865 |
+
"should_epoch_stop": false,
|
1866 |
+
"should_evaluate": false,
|
1867 |
+
"should_log": false,
|
1868 |
+
"should_save": false,
|
1869 |
+
"should_training_stop": false
|
1870 |
+
},
|
1871 |
+
"attributes": {}
|
1872 |
+
}
|
1873 |
+
},
|
1874 |
+
"total_flos": 2.900008367869133e+18,
|
1875 |
+
"train_batch_size": 32,
|
1876 |
+
"trial_name": null,
|
1877 |
+
"trial_params": null
|
1878 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77b1f122645fc9b701412009c0189edbe21eafd935b30085f92eaec2b367eb00
|
3 |
+
size 5240
|