--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-mnli-fer-finetuned results: [] --- # roberta-large-mnli-fer-finetuned This model is a fine-tuned version of [roberta-large](https://huggingface.co./roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6940 - Accuracy: 0.5005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7049 | 1.0 | 554 | 0.6895 | 0.5750 | | 0.6981 | 2.0 | 1108 | 0.7054 | 0.5005 | | 0.7039 | 3.0 | 1662 | 0.6936 | 0.5005 | | 0.6976 | 4.0 | 2216 | 0.6935 | 0.4995 | | 0.6991 | 5.0 | 2770 | 0.6940 | 0.5005 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1