ringorsolya
commited on
Commit
•
3d669bb
1
Parent(s):
13cf9ab
Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- .ipynb_checkpoints/Untitled-checkpoint.ipynb +6 -0
- Untitled.ipynb +748 -0
- checkpoint-34902/config.json +45 -0
- checkpoint-34902/model.safetensors +3 -0
- checkpoint-34902/optimizer.pt +3 -0
- checkpoint-34902/rng_state.pth +3 -0
- checkpoint-34902/scheduler.pt +3 -0
- checkpoint-34902/trainer_state.json +99 -0
- checkpoint-34902/training_args.bin +3 -0
- config.json +45 -0
- model.safetensors +3 -0
- pooled_v4_xlmRoberta_training.xlsx +3 -0
- test_data.xlsx +3 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
pooled_v4_xlmRoberta_training.xlsx filter=lfs diff=lfs merge=lfs -text
|
37 |
+
test_data.xlsx filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
Untitled.ipynb
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "9e85b4fd-6c00-4d15-9a99-f461461bf660",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"Requirement already satisfied: transformers in /home/p_babro/miniconda3/lib/python3.12/site-packages (4.43.4)\n",
|
14 |
+
"Requirement already satisfied: filelock in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (3.15.4)\n",
|
15 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.24.5)\n",
|
16 |
+
"Requirement already satisfied: numpy>=1.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (1.26.4)\n",
|
17 |
+
"Requirement already satisfied: packaging>=20.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (23.2)\n",
|
18 |
+
"Requirement already satisfied: pyyaml>=5.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (6.0.1)\n",
|
19 |
+
"Requirement already satisfied: regex!=2019.12.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (2024.7.24)\n",
|
20 |
+
"Requirement already satisfied: requests in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (2.32.2)\n",
|
21 |
+
"Requirement already satisfied: safetensors>=0.4.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.4.4)\n",
|
22 |
+
"Requirement already satisfied: tokenizers<0.20,>=0.19 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.19.1)\n",
|
23 |
+
"Requirement already satisfied: tqdm>=4.27 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (4.66.4)\n",
|
24 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (2024.5.0)\n",
|
25 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (4.12.2)\n",
|
26 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2.0.4)\n",
|
27 |
+
"Requirement already satisfied: idna<4,>=2.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (3.7)\n",
|
28 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2.2.2)\n",
|
29 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2024.7.4)\n",
|
30 |
+
"Note: you may need to restart the kernel to use updated packages.\n",
|
31 |
+
"Requirement already satisfied: datasets in /home/p_babro/miniconda3/lib/python3.12/site-packages (2.20.0)\n",
|
32 |
+
"Requirement already satisfied: filelock in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (3.15.4)\n",
|
33 |
+
"Requirement already satisfied: numpy>=1.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (1.26.4)\n",
|
34 |
+
"Requirement already satisfied: pyarrow>=15.0.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (17.0.0)\n",
|
35 |
+
"Requirement already satisfied: pyarrow-hotfix in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (0.6)\n",
|
36 |
+
"Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (0.3.8)\n",
|
37 |
+
"Requirement already satisfied: pandas in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (2.2.2)\n",
|
38 |
+
"Requirement already satisfied: requests>=2.32.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (2.32.2)\n",
|
39 |
+
"Requirement already satisfied: tqdm>=4.66.3 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (4.66.4)\n",
|
40 |
+
"Requirement already satisfied: xxhash in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (3.4.1)\n",
|
41 |
+
"Requirement already satisfied: multiprocess in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (0.70.16)\n",
|
42 |
+
"Requirement already satisfied: fsspec<=2024.5.0,>=2023.1.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets) (2024.5.0)\n",
|
43 |
+
"Requirement already satisfied: aiohttp in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (3.10.1)\n",
|
44 |
+
"Requirement already satisfied: huggingface-hub>=0.21.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (0.24.5)\n",
|
45 |
+
"Requirement already satisfied: packaging in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (23.2)\n",
|
46 |
+
"Requirement already satisfied: pyyaml>=5.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (6.0.1)\n",
|
47 |
+
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (2.3.4)\n",
|
48 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.3.1)\n",
|
49 |
+
"Requirement already satisfied: attrs>=17.3.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (24.1.0)\n",
|
50 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.4.1)\n",
|
51 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (6.0.5)\n",
|
52 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.9.4)\n",
|
53 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from huggingface-hub>=0.21.2->datasets) (4.12.2)\n",
|
54 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2.0.4)\n",
|
55 |
+
"Requirement already satisfied: idna<4,>=2.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (3.7)\n",
|
56 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2.2.2)\n",
|
57 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests>=2.32.2->datasets) (2024.7.4)\n",
|
58 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas->datasets) (2.9.0)\n",
|
59 |
+
"Requirement already satisfied: pytz>=2020.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas->datasets) (2024.1)\n",
|
60 |
+
"Requirement already satisfied: tzdata>=2022.7 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas->datasets) (2024.1)\n",
|
61 |
+
"Requirement already satisfied: six>=1.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n",
|
62 |
+
"Note: you may need to restart the kernel to use updated packages.\n",
|
63 |
+
"Requirement already satisfied: sentencepiece in /home/p_babro/miniconda3/lib/python3.12/site-packages (0.2.0)\n",
|
64 |
+
"Note: you may need to restart the kernel to use updated packages.\n",
|
65 |
+
"Requirement already satisfied: pandas in /home/p_babro/miniconda3/lib/python3.12/site-packages (2.2.2)\n",
|
66 |
+
"Requirement already satisfied: openpyxl in /home/p_babro/miniconda3/lib/python3.12/site-packages (3.1.5)\n",
|
67 |
+
"Requirement already satisfied: numpy>=1.26.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (1.26.4)\n",
|
68 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (2.9.0)\n",
|
69 |
+
"Requirement already satisfied: pytz>=2020.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (2024.1)\n",
|
70 |
+
"Requirement already satisfied: tzdata>=2022.7 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (2024.1)\n",
|
71 |
+
"Requirement already satisfied: et-xmlfile in /home/p_babro/miniconda3/lib/python3.12/site-packages (from openpyxl) (1.1.0)\n",
|
72 |
+
"Requirement already satisfied: six>=1.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n",
|
73 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
74 |
+
]
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"source": [
|
78 |
+
"%pip install transformers\n",
|
79 |
+
"%pip install datasets\n",
|
80 |
+
"%pip install sentencepiece\n",
|
81 |
+
"%pip install pandas openpyxl"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 2,
|
87 |
+
"id": "f72773a5-ddbc-43f7-a0b8-7b004a8b0db6",
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [
|
90 |
+
{
|
91 |
+
"name": "stdout",
|
92 |
+
"output_type": "stream",
|
93 |
+
"text": [
|
94 |
+
" labels text\n",
|
95 |
+
"0 1 Strach z osobního selhání často v kritických o...\n",
|
96 |
+
"1 5 Pre týchto ľudí treba nájsť riešenie.\n",
|
97 |
+
"2 5 Čestnými hosty byli bývalý spolkový prezident ...\n",
|
98 |
+
"3 4 Vaše milá slova mi opravdu zlepšila den.\n",
|
99 |
+
"4 4 Ďakujem mnohokrát! Z pochvaly máme radosť.\n"
|
100 |
+
]
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"source": [
|
104 |
+
"import pandas as pd\n",
|
105 |
+
"\n",
|
106 |
+
"# Specify the file path\n",
|
107 |
+
"file_path = '/project/home/p_babro/p_babel/v4_slant/pooled_v4_xlmRoberta_training.xlsx'\n",
|
108 |
+
"\n",
|
109 |
+
"# Read the Excel file\n",
|
110 |
+
"df = pd.read_excel(file_path)\n",
|
111 |
+
"\n",
|
112 |
+
"# Display the DataFrame\n",
|
113 |
+
"print(df.head())"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": 6,
|
119 |
+
"id": "e8c9c696-9308-4ac1-8364-798c04e7b54a",
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [
|
122 |
+
{
|
123 |
+
"name": "stdout",
|
124 |
+
"output_type": "stream",
|
125 |
+
"text": [
|
126 |
+
"Index(['labels', 'text'], dtype='object')\n"
|
127 |
+
]
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"# Load data from Excel file\n",
|
132 |
+
"df = pd.read_excel(file_path)\n",
|
133 |
+
"\n",
|
134 |
+
"# Print the column names to verify\n",
|
135 |
+
"print(df.columns)\n"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": 3,
|
141 |
+
"id": "86d92b6f-03b0-4df2-8f48-a34185180662",
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [
|
144 |
+
{
|
145 |
+
"name": "stderr",
|
146 |
+
"output_type": "stream",
|
147 |
+
"text": [
|
148 |
+
"Some weights of XLMRobertaForSequenceClassification were not initialized from the model checkpoint at xlm-roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
|
149 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
150 |
+
]
|
151 |
+
}
|
152 |
+
],
|
153 |
+
"source": [
|
154 |
+
"from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification\n",
|
155 |
+
"\n",
|
156 |
+
"# Model and tokenizer initialization\n",
|
157 |
+
"tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-base')\n",
|
158 |
+
"model = XLMRobertaForSequenceClassification.from_pretrained('xlm-roberta-base')"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 9,
|
164 |
+
"id": "24f34a63-31e4-4b57-bc72-a635cf3297a2",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"def start_train(df, model_name, batch_size, lr, max_length, num_epochs):\n",
|
169 |
+
"\n",
|
170 |
+
" # Prepare labels\n",
|
171 |
+
" label_encoder = LabelEncoder()\n",
|
172 |
+
" labels = df[label_column]\n",
|
173 |
+
" labels = label_encoder.fit_transform(labels)\n",
|
174 |
+
" num_labels = len(set(labels))\n",
|
175 |
+
"\n",
|
176 |
+
" # Hugging Face Datasets format\n",
|
177 |
+
" train_dataset = Dataset.from_pandas(train_data)\n",
|
178 |
+
" val_dataset = Dataset.from_pandas(val_data)\n",
|
179 |
+
" test_dataset = Dataset.from_pandas(test_data)\n",
|
180 |
+
"\n",
|
181 |
+
" # Load tokenizer\n",
|
182 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
183 |
+
"\n",
|
184 |
+
" # Tokenize\n",
|
185 |
+
" train_dataset = train_dataset.map(lambda x: tokenize_dataset(x, tokenizer, max_length, num_labels), batched=True, remove_columns=train_dataset.column_names)\n",
|
186 |
+
" val_dataset = val_dataset.map(lambda x: tokenize_dataset(x, tokenizer, max_length, num_labels), batched=True, remove_columns=val_dataset.column_names)\n",
|
187 |
+
" test_dataset = test_dataset.map(lambda x: tokenize_dataset(x, tokenizer, max_length, num_labels), batched=True, remove_columns=test_dataset.column_names)\n",
|
188 |
+
"\n",
|
189 |
+
" # Load model\n",
|
190 |
+
" model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, problem_type=\"multi_label_classification\")\n",
|
191 |
+
"\n",
|
192 |
+
" # Training arguments\n",
|
193 |
+
" training_args = TrainingArguments(\n",
|
194 |
+
" output_dir=drive_folder_to_save,\n",
|
195 |
+
" logging_dir=drive_folder_to_save,\n",
|
196 |
+
" logging_strategy='epoch',\n",
|
197 |
+
" logging_steps=100,\n",
|
198 |
+
" num_train_epochs=num_epochs,\n",
|
199 |
+
" per_device_train_batch_size=batch_size,\n",
|
200 |
+
" per_device_eval_batch_size=batch_size,\n",
|
201 |
+
" learning_rate=lr,\n",
|
202 |
+
" seed=42,\n",
|
203 |
+
" save_strategy='epoch',\n",
|
204 |
+
" save_steps=100,\n",
|
205 |
+
" evaluation_strategy='epoch',\n",
|
206 |
+
" eval_steps=100,\n",
|
207 |
+
" save_total_limit=1,\n",
|
208 |
+
" load_best_model_at_end=True,\n",
|
209 |
+
" )\n",
|
210 |
+
"\n",
|
211 |
+
" # Create trainer\n",
|
212 |
+
" trainer = Trainer(\n",
|
213 |
+
" model=model,\n",
|
214 |
+
" args=training_args,\n",
|
215 |
+
" train_dataset=train_dataset,\n",
|
216 |
+
" eval_dataset=val_dataset,\n",
|
217 |
+
" compute_metrics=compute_metrics,\n",
|
218 |
+
" callbacks=[EarlyStoppingCallback(early_stopping_patience=2)]\n",
|
219 |
+
" )\n",
|
220 |
+
"\n",
|
221 |
+
" # Train model\n",
|
222 |
+
" trainer.train()\n",
|
223 |
+
"\n",
|
224 |
+
" # Evaluate results\n",
|
225 |
+
" predictions = trainer.predict(test_dataset).predictions\n",
|
226 |
+
" preds = np.argmax(predictions, axis=1)\n",
|
227 |
+
" accuracy = accuracy_score(test_data[label_column], preds)\n",
|
228 |
+
" print(f'Accuracy: {accuracy}')\n",
|
229 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(test_data[label_column], preds, average='weighted')\n",
|
230 |
+
" print(f'Accuracy: {accuracy}')\n",
|
231 |
+
" print(f'Precision: {precision}')\n",
|
232 |
+
" print(f'Recall: {recall}')\n",
|
233 |
+
" print(f'F1 Score: {f1}')\n",
|
234 |
+
"\n",
|
235 |
+
" # Save model\n",
|
236 |
+
" trainer.save_model(folder_to_save)\n"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 7,
|
242 |
+
"id": "669ef024-3b2c-47c3-954c-de1e2b50f1d6",
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [
|
245 |
+
{
|
246 |
+
"name": "stdout",
|
247 |
+
"output_type": "stream",
|
248 |
+
"text": [
|
249 |
+
"Requirement already satisfied: pandas in /home/p_babro/miniconda3/lib/python3.12/site-packages (2.2.2)\n",
|
250 |
+
"Requirement already satisfied: openpyxl in /home/p_babro/miniconda3/lib/python3.12/site-packages (3.1.5)\n",
|
251 |
+
"Requirement already satisfied: transformers in /home/p_babro/miniconda3/lib/python3.12/site-packages (4.43.4)\n",
|
252 |
+
"Requirement already satisfied: datasets in /home/p_babro/miniconda3/lib/python3.12/site-packages (2.20.0)\n",
|
253 |
+
"Requirement already satisfied: evaluate in /home/p_babro/miniconda3/lib/python3.12/site-packages (0.4.2)\n",
|
254 |
+
"Requirement already satisfied: scikit-learn in /home/p_babro/miniconda3/lib/python3.12/site-packages (1.5.1)\n",
|
255 |
+
"Requirement already satisfied: numpy>=1.26.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (1.26.4)\n",
|
256 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (2.9.0)\n",
|
257 |
+
"Requirement already satisfied: pytz>=2020.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (2024.1)\n",
|
258 |
+
"Requirement already satisfied: tzdata>=2022.7 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from pandas) (2024.1)\n",
|
259 |
+
"Requirement already satisfied: et-xmlfile in /home/p_babro/miniconda3/lib/python3.12/site-packages (from openpyxl) (1.1.0)\n",
|
260 |
+
"Requirement already satisfied: filelock in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (3.15.4)\n",
|
261 |
+
"Requirement already satisfied: huggingface-hub<1.0,>=0.23.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.24.5)\n",
|
262 |
+
"Requirement already satisfied: packaging>=20.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (23.2)\n",
|
263 |
+
"Requirement already satisfied: pyyaml>=5.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (6.0.1)\n",
|
264 |
+
"Requirement already satisfied: regex!=2019.12.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (2024.7.24)\n",
|
265 |
+
"Requirement already satisfied: requests in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (2.32.2)\n",
|
266 |
+
"Requirement already satisfied: safetensors>=0.4.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.4.4)\n",
|
267 |
+
"Requirement already satisfied: tokenizers<0.20,>=0.19 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.19.1)\n",
|
268 |
+
"Requirement already satisfied: tqdm>=4.27 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (4.66.4)\n",
|
269 |
+
"Requirement already satisfied: pyarrow>=15.0.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (17.0.0)\n",
|
270 |
+
"Requirement already satisfied: pyarrow-hotfix in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (0.6)\n",
|
271 |
+
"Requirement already satisfied: dill<0.3.9,>=0.3.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (0.3.8)\n",
|
272 |
+
"Requirement already satisfied: xxhash in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (3.4.1)\n",
|
273 |
+
"Requirement already satisfied: multiprocess in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (0.70.16)\n",
|
274 |
+
"Requirement already satisfied: fsspec<=2024.5.0,>=2023.1.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from fsspec[http]<=2024.5.0,>=2023.1.0->datasets) (2024.5.0)\n",
|
275 |
+
"Requirement already satisfied: aiohttp in /home/p_babro/miniconda3/lib/python3.12/site-packages (from datasets) (3.10.1)\n",
|
276 |
+
"Requirement already satisfied: scipy>=1.6.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from scikit-learn) (1.14.0)\n",
|
277 |
+
"Requirement already satisfied: joblib>=1.2.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from scikit-learn) (1.4.2)\n",
|
278 |
+
"Requirement already satisfied: threadpoolctl>=3.1.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from scikit-learn) (3.5.0)\n",
|
279 |
+
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (2.3.4)\n",
|
280 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.3.1)\n",
|
281 |
+
"Requirement already satisfied: attrs>=17.3.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (24.1.0)\n",
|
282 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.4.1)\n",
|
283 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (6.0.5)\n",
|
284 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from aiohttp->datasets) (1.9.4)\n",
|
285 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (4.12.2)\n",
|
286 |
+
"Requirement already satisfied: six>=1.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n",
|
287 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2.0.4)\n",
|
288 |
+
"Requirement already satisfied: idna<4,>=2.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (3.7)\n",
|
289 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2.2.2)\n",
|
290 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2024.7.4)\n",
|
291 |
+
"Note: you may need to restart the kernel to use updated packages.\n",
|
292 |
+
"Train data shape: (186137, 2)\n",
|
293 |
+
"Val data shape: (23267, 2)\n",
|
294 |
+
"Test data shape: (23268, 2)\n",
|
295 |
+
"/project/home/p_babro/p_babel/v4_slant/test_data.xlsx saved!\n"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"data": {
|
300 |
+
"application/vnd.jupyter.widget-view+json": {
|
301 |
+
"model_id": "939855a37b3b43f3a1b5a54f3b7a1031",
|
302 |
+
"version_major": 2,
|
303 |
+
"version_minor": 0
|
304 |
+
},
|
305 |
+
"text/plain": [
|
306 |
+
"Map: 0%| | 0/186137 [00:00<?, ? examples/s]"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
"metadata": {},
|
310 |
+
"output_type": "display_data"
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"data": {
|
314 |
+
"application/vnd.jupyter.widget-view+json": {
|
315 |
+
"model_id": "52f14f45fad1420f820b3b96d994ae53",
|
316 |
+
"version_major": 2,
|
317 |
+
"version_minor": 0
|
318 |
+
},
|
319 |
+
"text/plain": [
|
320 |
+
"Map: 0%| | 0/23267 [00:00<?, ? examples/s]"
|
321 |
+
]
|
322 |
+
},
|
323 |
+
"metadata": {},
|
324 |
+
"output_type": "display_data"
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"data": {
|
328 |
+
"application/vnd.jupyter.widget-view+json": {
|
329 |
+
"model_id": "384f14f4adf044eda2f43960c9e5d7dc",
|
330 |
+
"version_major": 2,
|
331 |
+
"version_minor": 0
|
332 |
+
},
|
333 |
+
"text/plain": [
|
334 |
+
"Map: 0%| | 0/23268 [00:00<?, ? examples/s]"
|
335 |
+
]
|
336 |
+
},
|
337 |
+
"metadata": {},
|
338 |
+
"output_type": "display_data"
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"name": "stderr",
|
342 |
+
"output_type": "stream",
|
343 |
+
"text": [
|
344 |
+
"Some weights of XLMRobertaForSequenceClassification were not initialized from the model checkpoint at xlm-roberta-base and are newly initialized: ['classifier.dense.bias', 'classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight']\n",
|
345 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
346 |
+
"/home/p_babro/miniconda3/lib/python3.12/site-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
|
347 |
+
" warnings.warn(\n",
|
348 |
+
"Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"data": {
|
353 |
+
"text/html": [
|
354 |
+
"\n",
|
355 |
+
" <div>\n",
|
356 |
+
" \n",
|
357 |
+
" <progress value='58170' max='116340' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
358 |
+
" [ 58170/116340 2:33:12 < 2:33:12, 6.33 it/s, Epoch 5/10]\n",
|
359 |
+
" </div>\n",
|
360 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
361 |
+
" <thead>\n",
|
362 |
+
" <tr style=\"text-align: left;\">\n",
|
363 |
+
" <th>Epoch</th>\n",
|
364 |
+
" <th>Training Loss</th>\n",
|
365 |
+
" <th>Validation Loss</th>\n",
|
366 |
+
" <th>Accuracy</th>\n",
|
367 |
+
" <th>Precision</th>\n",
|
368 |
+
" <th>Recall</th>\n",
|
369 |
+
" <th>F1</th>\n",
|
370 |
+
" </tr>\n",
|
371 |
+
" </thead>\n",
|
372 |
+
" <tbody>\n",
|
373 |
+
" <tr>\n",
|
374 |
+
" <td>1</td>\n",
|
375 |
+
" <td>0.177300</td>\n",
|
376 |
+
" <td>0.141849</td>\n",
|
377 |
+
" <td>0.817252</td>\n",
|
378 |
+
" <td>0.818918</td>\n",
|
379 |
+
" <td>0.817252</td>\n",
|
380 |
+
" <td>0.817750</td>\n",
|
381 |
+
" </tr>\n",
|
382 |
+
" <tr>\n",
|
383 |
+
" <td>2</td>\n",
|
384 |
+
" <td>0.134500</td>\n",
|
385 |
+
" <td>0.133338</td>\n",
|
386 |
+
" <td>0.830103</td>\n",
|
387 |
+
" <td>0.830676</td>\n",
|
388 |
+
" <td>0.830103</td>\n",
|
389 |
+
" <td>0.830280</td>\n",
|
390 |
+
" </tr>\n",
|
391 |
+
" <tr>\n",
|
392 |
+
" <td>3</td>\n",
|
393 |
+
" <td>0.120100</td>\n",
|
394 |
+
" <td>0.130069</td>\n",
|
395 |
+
" <td>0.834229</td>\n",
|
396 |
+
" <td>0.834528</td>\n",
|
397 |
+
" <td>0.834229</td>\n",
|
398 |
+
" <td>0.833342</td>\n",
|
399 |
+
" </tr>\n",
|
400 |
+
" <tr>\n",
|
401 |
+
" <td>4</td>\n",
|
402 |
+
" <td>0.110600</td>\n",
|
403 |
+
" <td>0.132942</td>\n",
|
404 |
+
" <td>0.835045</td>\n",
|
405 |
+
" <td>0.834790</td>\n",
|
406 |
+
" <td>0.835045</td>\n",
|
407 |
+
" <td>0.834567</td>\n",
|
408 |
+
" </tr>\n",
|
409 |
+
" <tr>\n",
|
410 |
+
" <td>5</td>\n",
|
411 |
+
" <td>0.103200</td>\n",
|
412 |
+
" <td>0.131241</td>\n",
|
413 |
+
" <td>0.833455</td>\n",
|
414 |
+
" <td>0.833605</td>\n",
|
415 |
+
" <td>0.833455</td>\n",
|
416 |
+
" <td>0.833047</td>\n",
|
417 |
+
" </tr>\n",
|
418 |
+
" </tbody>\n",
|
419 |
+
"</table><p>"
|
420 |
+
],
|
421 |
+
"text/plain": [
|
422 |
+
"<IPython.core.display.HTML object>"
|
423 |
+
]
|
424 |
+
},
|
425 |
+
"metadata": {},
|
426 |
+
"output_type": "display_data"
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"data": {
|
430 |
+
"application/vnd.jupyter.widget-view+json": {
|
431 |
+
"model_id": "58682414ea364b57bb8cf08b0df06e4f",
|
432 |
+
"version_major": 2,
|
433 |
+
"version_minor": 0
|
434 |
+
},
|
435 |
+
"text/plain": [
|
436 |
+
"Downloading builder script: 0%| | 0.00/4.20k [00:00<?, ?B/s]"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
"metadata": {},
|
440 |
+
"output_type": "display_data"
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"data": {
|
444 |
+
"text/html": [],
|
445 |
+
"text/plain": [
|
446 |
+
"<IPython.core.display.HTML object>"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
"metadata": {},
|
450 |
+
"output_type": "display_data"
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"name": "stdout",
|
454 |
+
"output_type": "stream",
|
455 |
+
"text": [
|
456 |
+
"Accuracy: 0.8367715317173801\n",
|
457 |
+
"Precision: 0.8369187930273877\n",
|
458 |
+
"Recall: 0.8367715317173801\n",
|
459 |
+
"F1 Score: 0.8360611942926541\n"
|
460 |
+
]
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"source": [
|
464 |
+
"# Install necessary libraries\n",
|
465 |
+
"%pip install pandas openpyxl transformers datasets evaluate scikit-learn\n",
|
466 |
+
"\n",
|
467 |
+
"# Import necessary libraries\n",
|
468 |
+
"import pandas as pd\n",
|
469 |
+
"import numpy as np\n",
|
470 |
+
"import torch\n",
|
471 |
+
"from sklearn.model_selection import train_test_split\n",
|
472 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
473 |
+
"from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n",
|
474 |
+
"from transformers import (XLMRobertaTokenizer, XLMRobertaForSequenceClassification, AutoTokenizer,\n",
|
475 |
+
" AutoModelForSequenceClassification, Trainer, TrainingArguments)\n",
|
476 |
+
"from datasets import Dataset\n",
|
477 |
+
"from transformers.trainer_callback import EarlyStoppingCallback\n",
|
478 |
+
"import evaluate\n",
|
479 |
+
"from typing import List, Tuple\n",
|
480 |
+
"\n",
|
481 |
+
"# Define paths and columns\n",
|
482 |
+
"file_path = '/project/home/p_babro/p_babel/v4_slant/pooled_v4_xlmRoberta_training.xlsx'\n",
|
483 |
+
"text_column = 'text' # Replace with your actual text column name\n",
|
484 |
+
"label_column = 'labels' # Replace with your actual label column name\n",
|
485 |
+
"drive_folder_to_save = '/project/home/p_babro/p_babel/v4_slant' # Replace with your actual save folder path\n",
|
486 |
+
"\n",
|
487 |
+
"# Define functions\n",
|
488 |
+
"def load_data_from_excel(df, text_column: str, label_column: str) -> Tuple[List, List]:\n",
|
489 |
+
" return df[text_column].tolist(), df[label_column].tolist()\n",
|
490 |
+
"\n",
|
491 |
+
"def tokenize_dataset(data, tokenizer, max_length, num_labels):\n",
|
492 |
+
" tokenized = tokenizer(data[text_column],\n",
|
493 |
+
" max_length=max_length,\n",
|
494 |
+
" truncation=True,\n",
|
495 |
+
" padding=\"max_length\")\n",
|
496 |
+
"\n",
|
497 |
+
" labels = [x for x in data[label_column]]\n",
|
498 |
+
" labels_tensor = torch.as_tensor(labels)\n",
|
499 |
+
" labels_binary = torch.nn.functional.one_hot(labels_tensor, num_classes=num_labels).float()\n",
|
500 |
+
"\n",
|
501 |
+
" tokenized['labels'] = labels_binary\n",
|
502 |
+
"\n",
|
503 |
+
" return tokenized\n",
|
504 |
+
"\n",
|
505 |
+
"def compute_metrics(eval_pred):\n",
|
506 |
+
" metric = evaluate.load(\"accuracy\")\n",
|
507 |
+
" logits, labels = eval_pred\n",
|
508 |
+
" predictions = np.argmax(logits, axis=1)\n",
|
509 |
+
" reference_labels = [np.argmax(label) for label in labels]\n",
|
510 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(reference_labels, predictions, average='weighted')\n",
|
511 |
+
" accuracy = accuracy_score(reference_labels, predictions)\n",
|
512 |
+
" return {\n",
|
513 |
+
" 'accuracy': accuracy,\n",
|
514 |
+
" 'precision': precision,\n",
|
515 |
+
" 'recall': recall,\n",
|
516 |
+
" 'f1': f1\n",
|
517 |
+
" }\n",
|
518 |
+
"\n",
|
519 |
+
"# Load data from Excel file\n",
|
520 |
+
"df = pd.read_excel(file_path)\n",
|
521 |
+
"texts, labels = load_data_from_excel(df, text_column, label_column)\n",
|
522 |
+
"\n",
|
523 |
+
"# Split the data\n",
|
524 |
+
"data = pd.DataFrame({text_column: texts, label_column: labels})\n",
|
525 |
+
"train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)\n",
|
526 |
+
"val_data, test_data = train_test_split(test_data, test_size=0.5, random_state=42)\n",
|
527 |
+
"\n",
|
528 |
+
"print(f'Train data shape: {train_data.shape}')\n",
|
529 |
+
"print(f'Val data shape: {val_data.shape}')\n",
|
530 |
+
"print(f'Test data shape: {test_data.shape}')\n",
|
531 |
+
"\n",
|
532 |
+
"# Save test data to Excel\n",
|
533 |
+
"test_data.to_excel(f'{drive_folder_to_save}/test_data.xlsx', index=False)\n",
|
534 |
+
"print(f'{drive_folder_to_save}/test_data.xlsx saved!')\n",
|
535 |
+
"\n",
|
536 |
+
"def start_train(df, model_name, batch_size, lr, max_length, num_epochs):\n",
|
537 |
+
"\n",
|
538 |
+
" # Prepare labels\n",
|
539 |
+
" label_encoder = LabelEncoder()\n",
|
540 |
+
" labels = df[label_column]\n",
|
541 |
+
" labels = label_encoder.fit_transform(labels)\n",
|
542 |
+
" num_labels = len(set(labels))\n",
|
543 |
+
"\n",
|
544 |
+
" # Hugging Face Datasets format\n",
|
545 |
+
" train_dataset = Dataset.from_pandas(train_data)\n",
|
546 |
+
" val_dataset = Dataset.from_pandas(val_data)\n",
|
547 |
+
" test_dataset = Dataset.from_pandas(test_data)\n",
|
548 |
+
"\n",
|
549 |
+
" # Load tokenizer\n",
|
550 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
551 |
+
"\n",
|
552 |
+
" # Tokenize\n",
|
553 |
+
" train_dataset = train_dataset.map(lambda x: tokenize_dataset(x, tokenizer, max_length, num_labels), batched=True, remove_columns=train_dataset.column_names)\n",
|
554 |
+
" val_dataset = val_dataset.map(lambda x: tokenize_dataset(x, tokenizer, max_length, num_labels), batched=True, remove_columns=val_dataset.column_names)\n",
|
555 |
+
" test_dataset = test_dataset.map(lambda x: tokenize_dataset(x, tokenizer, max_length, num_labels), batched=True, remove_columns=test_dataset.column_names)\n",
|
556 |
+
"\n",
|
557 |
+
" # Load model\n",
|
558 |
+
" model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels, problem_type=\"multi_label_classification\")\n",
|
559 |
+
"\n",
|
560 |
+
" # Training arguments\n",
|
561 |
+
" training_args = TrainingArguments(\n",
|
562 |
+
" output_dir=drive_folder_to_save,\n",
|
563 |
+
" logging_dir=drive_folder_to_save,\n",
|
564 |
+
" logging_strategy='epoch',\n",
|
565 |
+
" logging_steps=100,\n",
|
566 |
+
" num_train_epochs=num_epochs,\n",
|
567 |
+
" per_device_train_batch_size=batch_size,\n",
|
568 |
+
" per_device_eval_batch_size=batch_size,\n",
|
569 |
+
" learning_rate=lr,\n",
|
570 |
+
" seed=42,\n",
|
571 |
+
" save_strategy='epoch',\n",
|
572 |
+
" save_steps=100,\n",
|
573 |
+
" evaluation_strategy='epoch',\n",
|
574 |
+
" eval_steps=100,\n",
|
575 |
+
" save_total_limit=1,\n",
|
576 |
+
" load_best_model_at_end=True,\n",
|
577 |
+
" )\n",
|
578 |
+
"\n",
|
579 |
+
" # Create trainer\n",
|
580 |
+
" trainer = Trainer(\n",
|
581 |
+
" model=model,\n",
|
582 |
+
" args=training_args,\n",
|
583 |
+
" train_dataset=train_dataset,\n",
|
584 |
+
" eval_dataset=val_dataset,\n",
|
585 |
+
" compute_metrics=compute_metrics,\n",
|
586 |
+
" callbacks=[EarlyStoppingCallback(early_stopping_patience=2)]\n",
|
587 |
+
" )\n",
|
588 |
+
"\n",
|
589 |
+
" # Train model\n",
|
590 |
+
" trainer.train()\n",
|
591 |
+
"\n",
|
592 |
+
" # Evaluate results\n",
|
593 |
+
" predictions = trainer.predict(test_dataset).predictions\n",
|
594 |
+
" preds = np.argmax(predictions, axis=1)\n",
|
595 |
+
" accuracy = accuracy_score(test_data[label_column], preds)\n",
|
596 |
+
" print(f'Accuracy: {accuracy}')\n",
|
597 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(test_data[label_column], preds, average='weighted')\n",
|
598 |
+
" print(f'Precision: {precision}')\n",
|
599 |
+
" print(f'Recall: {recall}')\n",
|
600 |
+
" print(f'F1 Score: {f1}')\n",
|
601 |
+
"\n",
|
602 |
+
" # Save model\n",
|
603 |
+
" trainer.save_model(drive_folder_to_save)\n",
|
604 |
+
"\n",
|
605 |
+
"# Define training parameters\n",
|
606 |
+
"model_name = 'xlm-roberta-base'\n",
|
607 |
+
"batch_size = 16\n",
|
608 |
+
"learning_rate = 5e-6\n",
|
609 |
+
"max_length = 128\n",
|
610 |
+
"num_epochs = 10\n",
|
611 |
+
"\n",
|
612 |
+
"# Start training\n",
|
613 |
+
"start_train(df, model_name, batch_size, learning_rate, max_length, num_epochs)\n"
|
614 |
+
]
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"cell_type": "code",
|
618 |
+
"execution_count": 12,
|
619 |
+
"id": "b47790d8-771e-45b9-a5c7-31d939de35b5",
|
620 |
+
"metadata": {},
|
621 |
+
"outputs": [
|
622 |
+
{
|
623 |
+
"name": "stdout",
|
624 |
+
"output_type": "stream",
|
625 |
+
"text": [
|
626 |
+
"Requirement already satisfied: transformers in /home/p_babro/miniconda3/lib/python3.12/site-packages (4.43.4)\n",
|
627 |
+
"Requirement already satisfied: huggingface_hub in /home/p_babro/miniconda3/lib/python3.12/site-packages (0.24.5)\n",
|
628 |
+
"Collecting python-dotenv\n",
|
629 |
+
" Downloading python_dotenv-1.0.1-py3-none-any.whl.metadata (23 kB)\n",
|
630 |
+
"Requirement already satisfied: filelock in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (3.15.4)\n",
|
631 |
+
"Requirement already satisfied: numpy>=1.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (1.26.4)\n",
|
632 |
+
"Requirement already satisfied: packaging>=20.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (23.2)\n",
|
633 |
+
"Requirement already satisfied: pyyaml>=5.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (6.0.1)\n",
|
634 |
+
"Requirement already satisfied: regex!=2019.12.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (2024.7.24)\n",
|
635 |
+
"Requirement already satisfied: requests in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (2.32.2)\n",
|
636 |
+
"Requirement already satisfied: safetensors>=0.4.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.4.4)\n",
|
637 |
+
"Requirement already satisfied: tokenizers<0.20,>=0.19 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (0.19.1)\n",
|
638 |
+
"Requirement already satisfied: tqdm>=4.27 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from transformers) (4.66.4)\n",
|
639 |
+
"Requirement already satisfied: fsspec>=2023.5.0 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from huggingface_hub) (2024.5.0)\n",
|
640 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from huggingface_hub) (4.12.2)\n",
|
641 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2.0.4)\n",
|
642 |
+
"Requirement already satisfied: idna<4,>=2.5 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (3.7)\n",
|
643 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2.2.2)\n",
|
644 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /home/p_babro/miniconda3/lib/python3.12/site-packages (from requests->transformers) (2024.7.4)\n",
|
645 |
+
"Downloading python_dotenv-1.0.1-py3-none-any.whl (19 kB)\n",
|
646 |
+
"Installing collected packages: python-dotenv\n",
|
647 |
+
"Successfully installed python-dotenv-1.0.1\n",
|
648 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
649 |
+
]
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"ename": "ValueError",
|
653 |
+
"evalue": "Please set the HF_TOKEN environment variable.",
|
654 |
+
"output_type": "error",
|
655 |
+
"traceback": [
|
656 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
657 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
658 |
+
"Cell \u001b[0;32mIn[12], line 16\u001b[0m\n\u001b[1;32m 14\u001b[0m hf_token \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mgetenv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHF_TOKEN\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m hf_token:\n\u001b[0;32m---> 16\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease set the HF_TOKEN environment variable.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 18\u001b[0m \u001b[38;5;66;03m# Define your save directory and Hugging Face repository information\u001b[39;00m\n\u001b[1;32m 19\u001b[0m drive_folder_to_save \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/project/home/p_babro/p_babel/v4_slant\u001b[39m\u001b[38;5;124m'\u001b[39m\n",
|
659 |
+
"\u001b[0;31mValueError\u001b[0m: Please set the HF_TOKEN environment variable."
|
660 |
+
]
|
661 |
+
}
|
662 |
+
],
|
663 |
+
"source": [
|
664 |
+
"# Install necessary libraries\n",
|
665 |
+
"%pip install transformers huggingface_hub python-dotenv\n",
|
666 |
+
"\n",
|
667 |
+
"# Import necessary libraries\n",
|
668 |
+
"from transformers import AutoTokenizer\n",
|
669 |
+
"from huggingface_hub import HfApi\n",
|
670 |
+
"import os\n",
|
671 |
+
"from dotenv import load_dotenv\n",
|
672 |
+
"\n",
|
673 |
+
"# Load environment variables from .env file\n",
|
674 |
+
"load_dotenv()\n",
|
675 |
+
"\n",
|
676 |
+
"# Retrieve the token from the environment variable\n",
|
677 |
+
"hf_token = os.getenv(\"HF_TOKEN\")\n",
|
678 |
+
"if not hf_token:\n",
|
679 |
+
" raise ValueError(\"Please set the HF_TOKEN environment variable.\")\n",
|
680 |
+
"\n",
|
681 |
+
"# Define your save directory and Hugging Face repository information\n",
|
682 |
+
"drive_folder_to_save = '/project/home/p_babro/p_babel/v4_slant'\n",
|
683 |
+
"repo_id = \"ringorsolya/Emotion_RoBERTa_pooled_V4\"\n",
|
684 |
+
"\n",
|
685 |
+
"# Set environment variable to avoid the parallelism warning\n",
|
686 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
687 |
+
"\n",
|
688 |
+
"# Initialize the HfApi with your token\n",
|
689 |
+
"api = HfApi()\n",
|
690 |
+
"\n",
|
691 |
+
"# Ensure the folder exists and contains files\n",
|
692 |
+
"if os.path.exists(drive_folder_to_save) and os.listdir(drive_folder_to_save):\n",
|
693 |
+
" print(f\"Uploading folder {drive_folder_to_save} to Hugging Face repository {repo_id}\")\n",
|
694 |
+
" \n",
|
695 |
+
" # Upload the model folder to the Hugging Face repository\n",
|
696 |
+
" api.upload_folder(\n",
|
697 |
+
" folder_path=drive_folder_to_save,\n",
|
698 |
+
" repo_id=repo_id,\n",
|
699 |
+
" token=hf_token\n",
|
700 |
+
" )\n",
|
701 |
+
" \n",
|
702 |
+
" print(\"Folder upload completed.\")\n",
|
703 |
+
"else:\n",
|
704 |
+
" print(f\"The folder {drive_folder_to_save} does not exist or is empty.\")\n",
|
705 |
+
"\n",
|
706 |
+
"# Load the tokenizer (use the correct model name if different)\n",
|
707 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"xlm-roberta-base\") # Or the name of your saved model\n",
|
708 |
+
"\n",
|
709 |
+
"# Push the tokenizer to the Hugging Face repository\n",
|
710 |
+
"tokenizer.push_to_hub(\n",
|
711 |
+
" repo_id=repo_id,\n",
|
712 |
+
" use_auth_token=hf_token\n",
|
713 |
+
")\n",
|
714 |
+
"\n",
|
715 |
+
"print(\"Tokenizer upload completed.\")\n"
|
716 |
+
]
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"cell_type": "code",
|
720 |
+
"execution_count": null,
|
721 |
+
"id": "5bcd6e0f-f56f-4d6f-a323-04286e7d06f8",
|
722 |
+
"metadata": {},
|
723 |
+
"outputs": [],
|
724 |
+
"source": []
|
725 |
+
}
|
726 |
+
],
|
727 |
+
"metadata": {
|
728 |
+
"kernelspec": {
|
729 |
+
"display_name": "Python 3 (ipykernel)",
|
730 |
+
"language": "python",
|
731 |
+
"name": "python3"
|
732 |
+
},
|
733 |
+
"language_info": {
|
734 |
+
"codemirror_mode": {
|
735 |
+
"name": "ipython",
|
736 |
+
"version": 3
|
737 |
+
},
|
738 |
+
"file_extension": ".py",
|
739 |
+
"mimetype": "text/x-python",
|
740 |
+
"name": "python",
|
741 |
+
"nbconvert_exporter": "python",
|
742 |
+
"pygments_lexer": "ipython3",
|
743 |
+
"version": "3.12.2"
|
744 |
+
}
|
745 |
+
},
|
746 |
+
"nbformat": 4,
|
747 |
+
"nbformat_minor": 5
|
748 |
+
}
|
checkpoint-34902/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5"
|
20 |
+
},
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 3072,
|
23 |
+
"label2id": {
|
24 |
+
"LABEL_0": 0,
|
25 |
+
"LABEL_1": 1,
|
26 |
+
"LABEL_2": 2,
|
27 |
+
"LABEL_3": 3,
|
28 |
+
"LABEL_4": 4,
|
29 |
+
"LABEL_5": 5
|
30 |
+
},
|
31 |
+
"layer_norm_eps": 1e-05,
|
32 |
+
"max_position_embeddings": 514,
|
33 |
+
"model_type": "xlm-roberta",
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 12,
|
36 |
+
"output_past": true,
|
37 |
+
"pad_token_id": 1,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"problem_type": "multi_label_classification",
|
40 |
+
"torch_dtype": "float32",
|
41 |
+
"transformers_version": "4.43.4",
|
42 |
+
"type_vocab_size": 1,
|
43 |
+
"use_cache": true,
|
44 |
+
"vocab_size": 250002
|
45 |
+
}
|
checkpoint-34902/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc5cad10fb2e65429f1414393260729d04922c20b143fb2308c4ebf89e178a75
|
3 |
+
size 1112217312
|
checkpoint-34902/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a997112d66429766ee61cd0e1349976747bb1fcd91512108b712d3abf74309f3
|
3 |
+
size 2224554234
|
checkpoint-34902/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bca90ea2211b516c7fae8e0149a76a5ac06875de579dc64e16b5f64d6f22fa2d
|
3 |
+
size 14244
|
checkpoint-34902/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:076211ed8fa209fc22da0556749ec591ad6116d3c67eabbd8264ccd06b091a34
|
3 |
+
size 1064
|
checkpoint-34902/trainer_state.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.13006852567195892,
|
3 |
+
"best_model_checkpoint": "/project/home/p_babro/p_babel/v4_slant/checkpoint-34902",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 34902,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"grad_norm": 3.1385393142700195,
|
14 |
+
"learning_rate": 4.5e-06,
|
15 |
+
"loss": 0.1773,
|
16 |
+
"step": 11634
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.8172519018352172,
|
21 |
+
"eval_f1": 0.8177504983784618,
|
22 |
+
"eval_loss": 0.14184926450252533,
|
23 |
+
"eval_precision": 0.8189176699515038,
|
24 |
+
"eval_recall": 0.8172519018352172,
|
25 |
+
"eval_runtime": 60.5693,
|
26 |
+
"eval_samples_per_second": 384.138,
|
27 |
+
"eval_steps_per_second": 24.022,
|
28 |
+
"step": 11634
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 2.0,
|
32 |
+
"grad_norm": 6.301619052886963,
|
33 |
+
"learning_rate": 4.000000000000001e-06,
|
34 |
+
"loss": 0.1345,
|
35 |
+
"step": 23268
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.8301027205913956,
|
40 |
+
"eval_f1": 0.8302797870565826,
|
41 |
+
"eval_loss": 0.13333828747272491,
|
42 |
+
"eval_precision": 0.8306761234771176,
|
43 |
+
"eval_recall": 0.8301027205913956,
|
44 |
+
"eval_runtime": 59.9815,
|
45 |
+
"eval_samples_per_second": 387.903,
|
46 |
+
"eval_steps_per_second": 24.257,
|
47 |
+
"step": 23268
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 3.0,
|
51 |
+
"grad_norm": 5.983363151550293,
|
52 |
+
"learning_rate": 3.5e-06,
|
53 |
+
"loss": 0.1201,
|
54 |
+
"step": 34902
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.8342287359779946,
|
59 |
+
"eval_f1": 0.8333415258252606,
|
60 |
+
"eval_loss": 0.13006852567195892,
|
61 |
+
"eval_precision": 0.8345277590208003,
|
62 |
+
"eval_recall": 0.8342287359779946,
|
63 |
+
"eval_runtime": 56.7072,
|
64 |
+
"eval_samples_per_second": 410.301,
|
65 |
+
"eval_steps_per_second": 25.658,
|
66 |
+
"step": 34902
|
67 |
+
}
|
68 |
+
],
|
69 |
+
"logging_steps": 100,
|
70 |
+
"max_steps": 116340,
|
71 |
+
"num_input_tokens_seen": 0,
|
72 |
+
"num_train_epochs": 10,
|
73 |
+
"save_steps": 100,
|
74 |
+
"stateful_callbacks": {
|
75 |
+
"EarlyStoppingCallback": {
|
76 |
+
"args": {
|
77 |
+
"early_stopping_patience": 2,
|
78 |
+
"early_stopping_threshold": 0.0
|
79 |
+
},
|
80 |
+
"attributes": {
|
81 |
+
"early_stopping_patience_counter": 0
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"TrainerControl": {
|
85 |
+
"args": {
|
86 |
+
"should_epoch_stop": false,
|
87 |
+
"should_evaluate": false,
|
88 |
+
"should_log": false,
|
89 |
+
"should_save": true,
|
90 |
+
"should_training_stop": false
|
91 |
+
},
|
92 |
+
"attributes": {}
|
93 |
+
}
|
94 |
+
},
|
95 |
+
"total_flos": 3.673234605593549e+16,
|
96 |
+
"train_batch_size": 16,
|
97 |
+
"trial_name": null,
|
98 |
+
"trial_params": null
|
99 |
+
}
|
checkpoint-34902/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6b93185a28c952ca066cf86488db93fa194fd44cf76b3b59fc1937acd9fdeab
|
3 |
+
size 5112
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4",
|
19 |
+
"5": "LABEL_5"
|
20 |
+
},
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"intermediate_size": 3072,
|
23 |
+
"label2id": {
|
24 |
+
"LABEL_0": 0,
|
25 |
+
"LABEL_1": 1,
|
26 |
+
"LABEL_2": 2,
|
27 |
+
"LABEL_3": 3,
|
28 |
+
"LABEL_4": 4,
|
29 |
+
"LABEL_5": 5
|
30 |
+
},
|
31 |
+
"layer_norm_eps": 1e-05,
|
32 |
+
"max_position_embeddings": 514,
|
33 |
+
"model_type": "xlm-roberta",
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 12,
|
36 |
+
"output_past": true,
|
37 |
+
"pad_token_id": 1,
|
38 |
+
"position_embedding_type": "absolute",
|
39 |
+
"problem_type": "multi_label_classification",
|
40 |
+
"torch_dtype": "float32",
|
41 |
+
"transformers_version": "4.43.4",
|
42 |
+
"type_vocab_size": 1,
|
43 |
+
"use_cache": true,
|
44 |
+
"vocab_size": 250002
|
45 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc5cad10fb2e65429f1414393260729d04922c20b143fb2308c4ebf89e178a75
|
3 |
+
size 1112217312
|
pooled_v4_xlmRoberta_training.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c641f391ef8fa3c68a7509cc06d3d56cb2dd58d4955f0a46b89359628d78afa
|
3 |
+
size 8796228
|
test_data.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b873bd285540583a83067e6feaa2433e0e547993896cfce879f47d135730847
|
3 |
+
size 1544302
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6b93185a28c952ca066cf86488db93fa194fd44cf76b3b59fc1937acd9fdeab
|
3 |
+
size 5112
|