File size: 1,209 Bytes
c7bac13 cafd16a c7bac13 36530d2 c7bac13 50ca079 c7bac13 3e2bacd c7bac13 ade6ab7 c7bac13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
language: it
license: mit
widget:
- text: "Con del pesce bisogna bere un bicchiere di vino [MASK]."
- text: "Con la carne c'è bisogno del vino [MASK]."
- text: "A tavola non può mancare del buon [MASK]."
---
# WineBERTo 🍷🥂
**wineberto-italian-cased** is a BERT model obtained by MLM adaptive-tuning [**bert-base-italian-xxl-cased**](https://huggingface.co./dbmdz/bert-base-italian-xxl-cased) on Italian drink recipes and wine descriptions, approximately 77k sentences (3.3M words).
**Author:** Cristiano De Nobili ([@denocris](https://twitter.com/denocris) on Twitter, [LinkedIn](https://www.linkedin.com/in/cristiano-de-nobili/)) for [VINHOOD](https://www.vinhood.com/en/).
<p>
<img src="https://drive.google.com/uc?export=view&id=1dco9I9uzevP2V6oku1salIYcovUAeqWE" width="400"> </br>
</p>
# Perplexity
Test set: 14k sentences about wine.
| Model | Perplexity |
| ------ | ------ |
| wineberto-italian-cased | **2.28** |
| bert-base-italian-xxl-cased | 4.60 |
# Usage
```python
from transformers import AutoModel, AutoTokenizer
model_name = "vinhood/wineberto-italian-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
``` |