File size: 7,416 Bytes
78e90f0 7c5d110 ed0cc5a 78e90f0 a736c2d 78e90f0 7c5d110 ed0cc5a 78e90f0 ed0cc5a 78e90f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- ktgiahieu/maccrobat2018_2020
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BioMedical_NER-maccrobat-bert
results: []
widget:
- text: "CASE: A 28-year-old previously healthy man presented with a 6-week history of palpitations.
The symptoms occurred during rest, 2–3 times per week, lasted up to 30 minutes at a time and were associated with dyspnea.
Except for a grade 2/6 holosystolic tricuspid regurgitation murmur (best heard at the left sternal border with inspiratory accentuation), physical examination yielded unremarkable findings."
example_title: "example 1"
- text: "A 63-year-old woman with no known cardiac history presented with a sudden onset of dyspnea requiring intubation and ventilatory support out of hospital.
She denied preceding symptoms of chest discomfort, palpitations, syncope or infection.
The patient was afebrile and normotensive, with a sinus tachycardia of 140 beats/min."
example_title: "example 2"
- text: "A 48 year-old female presented with vaginal bleeding and abnormal Pap smears.
Upon diagnosis of invasive non-keratinizing SCC of the cervix, she underwent a radical hysterectomy with salpingo-oophorectomy which demonstrated positive spread to the pelvic lymph nodes and the parametrium.
Pathological examination revealed that the tumour also extensively involved the lower uterine segment."
example_title: "example 3"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BioMedical_NER-maccrobat-bert
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on [maccrobat2018_2020](https://huggingface.co./datasets/ktgiahieu/maccrobat2018_2020) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3418
- Precision: 0.8668
- Recall: 0.9491
- F1: 0.9061
- Accuracy: 0.9501
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 45 | 1.7363 | 0.4262 | 0.0055 | 0.0108 | 0.6274 |
| No log | 2.0 | 90 | 1.3805 | 0.3534 | 0.2073 | 0.2613 | 0.6565 |
| No log | 3.0 | 135 | 1.1713 | 0.4026 | 0.3673 | 0.3841 | 0.6908 |
| No log | 4.0 | 180 | 1.0551 | 0.4392 | 0.5309 | 0.4807 | 0.7149 |
| No log | 5.0 | 225 | 0.9591 | 0.4893 | 0.6012 | 0.5395 | 0.7496 |
| No log | 6.0 | 270 | 0.8656 | 0.5156 | 0.6483 | 0.5744 | 0.7722 |
| No log | 7.0 | 315 | 0.8613 | 0.5124 | 0.6871 | 0.5870 | 0.7716 |
| No log | 8.0 | 360 | 0.7524 | 0.5699 | 0.7114 | 0.6329 | 0.8110 |
| No log | 9.0 | 405 | 0.6966 | 0.5884 | 0.7374 | 0.6545 | 0.8265 |
| No log | 10.0 | 450 | 0.6564 | 0.6147 | 0.7678 | 0.6827 | 0.8373 |
| No log | 11.0 | 495 | 0.5950 | 0.6484 | 0.7826 | 0.7092 | 0.8563 |
| 0.9321 | 12.0 | 540 | 0.6083 | 0.6578 | 0.8001 | 0.7220 | 0.8587 |
| 0.9321 | 13.0 | 585 | 0.5821 | 0.6682 | 0.8206 | 0.7366 | 0.8688 |
| 0.9321 | 14.0 | 630 | 0.5578 | 0.6787 | 0.8324 | 0.7477 | 0.8744 |
| 0.9321 | 15.0 | 675 | 0.4819 | 0.7338 | 0.8484 | 0.7870 | 0.8974 |
| 0.9321 | 16.0 | 720 | 0.4775 | 0.7461 | 0.8573 | 0.7978 | 0.9020 |
| 0.9321 | 17.0 | 765 | 0.4786 | 0.7395 | 0.8600 | 0.7952 | 0.9020 |
| 0.9321 | 18.0 | 810 | 0.4481 | 0.7647 | 0.8740 | 0.8157 | 0.9102 |
| 0.9321 | 19.0 | 855 | 0.4597 | 0.7638 | 0.8799 | 0.8177 | 0.9108 |
| 0.9321 | 20.0 | 900 | 0.4551 | 0.7617 | 0.8835 | 0.8181 | 0.9096 |
| 0.9321 | 21.0 | 945 | 0.4365 | 0.7698 | 0.8873 | 0.8244 | 0.9142 |
| 0.9321 | 22.0 | 990 | 0.3993 | 0.7986 | 0.8957 | 0.8444 | 0.9247 |
| 0.2115 | 23.0 | 1035 | 0.4162 | 0.7950 | 0.9014 | 0.8449 | 0.9234 |
| 0.2115 | 24.0 | 1080 | 0.4188 | 0.8007 | 0.9042 | 0.8493 | 0.9248 |
| 0.2115 | 25.0 | 1125 | 0.3996 | 0.8105 | 0.9103 | 0.8575 | 0.9291 |
| 0.2115 | 26.0 | 1170 | 0.3775 | 0.8226 | 0.9134 | 0.8657 | 0.9333 |
| 0.2115 | 27.0 | 1215 | 0.3656 | 0.8297 | 0.9187 | 0.8720 | 0.9364 |
| 0.2115 | 28.0 | 1260 | 0.3744 | 0.8323 | 0.9217 | 0.8747 | 0.9371 |
| 0.2115 | 29.0 | 1305 | 0.3763 | 0.8296 | 0.9229 | 0.8738 | 0.9364 |
| 0.2115 | 30.0 | 1350 | 0.3506 | 0.8454 | 0.9272 | 0.8844 | 0.9414 |
| 0.2115 | 31.0 | 1395 | 0.3602 | 0.8441 | 0.9301 | 0.8850 | 0.9413 |
| 0.2115 | 32.0 | 1440 | 0.3617 | 0.8359 | 0.9303 | 0.8806 | 0.9400 |
| 0.2115 | 33.0 | 1485 | 0.3737 | 0.8352 | 0.9310 | 0.8805 | 0.9388 |
| 0.0818 | 34.0 | 1530 | 0.3541 | 0.8477 | 0.9352 | 0.8893 | 0.9438 |
| 0.0818 | 35.0 | 1575 | 0.3553 | 0.8487 | 0.9377 | 0.8910 | 0.9439 |
| 0.0818 | 36.0 | 1620 | 0.3583 | 0.8476 | 0.9367 | 0.8899 | 0.9438 |
| 0.0818 | 37.0 | 1665 | 0.3318 | 0.8642 | 0.9400 | 0.9005 | 0.9484 |
| 0.0818 | 38.0 | 1710 | 0.3449 | 0.8598 | 0.9409 | 0.8985 | 0.9471 |
| 0.0818 | 39.0 | 1755 | 0.3466 | 0.8591 | 0.9419 | 0.8986 | 0.9468 |
| 0.0818 | 40.0 | 1800 | 0.3494 | 0.8591 | 0.9426 | 0.8989 | 0.9473 |
| 0.0818 | 41.0 | 1845 | 0.3494 | 0.8591 | 0.9451 | 0.9001 | 0.9475 |
| 0.0818 | 42.0 | 1890 | 0.3545 | 0.8588 | 0.9462 | 0.9004 | 0.9477 |
| 0.0818 | 43.0 | 1935 | 0.3569 | 0.8599 | 0.9460 | 0.9009 | 0.9470 |
| 0.0818 | 44.0 | 1980 | 0.3465 | 0.8645 | 0.9468 | 0.9038 | 0.9492 |
| 0.0469 | 45.0 | 2025 | 0.3424 | 0.8663 | 0.9489 | 0.9057 | 0.9498 |
| 0.0469 | 46.0 | 2070 | 0.3460 | 0.8643 | 0.9481 | 0.9043 | 0.9490 |
| 0.0469 | 47.0 | 2115 | 0.3445 | 0.8658 | 0.9483 | 0.9052 | 0.9496 |
| 0.0469 | 48.0 | 2160 | 0.3387 | 0.8701 | 0.9500 | 0.9083 | 0.9508 |
| 0.0469 | 49.0 | 2205 | 0.3432 | 0.8671 | 0.9491 | 0.9063 | 0.9501 |
| 0.0469 | 50.0 | 2250 | 0.3418 | 0.8668 | 0.9491 | 0.9061 | 0.9501 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|