--- base_model: BAAI/bge-base-en-v1.5 datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:26 - loss:MultipleNegativesRankingLoss widget: - source_sentence: The Supplier shall deliver the Batteries to the Manufacturer within 5 days of receipt of each sentences: - according to the MOU? - What is the Delivery Schedule for the Batteries? - single order? - source_sentence: The Employee agrees to abide by the Employer’s rules, regulations, guidelines, policies, and sentences: - When does this Agreement terminate? - What rules and policies must the Employee abide by? - Which law governs this Agreement, and where would disputes be resolved? - source_sentence: 'Answer: Deepak Babbar agrees to pay Rs 5,10,000 as a full and final settlement to Ayushi' sentences: - What are the Payment Terms for the Batteries? - What financial settlement does Deepak Babbar agree to in the MOU? - order? - source_sentence: The Supplier agrees to supply 60,000 Batteries over the course of one year, as specified in sentences: - When does the Employee commence employment with the Employer? - When does the Company employ the Employee? - How many Batteries are Supplier obligated to supply under this Agreement? - source_sentence: The term of this Agreement shall continue until terminated by either party in accordance with sentences: - What is the pricing per Battery under this Agreement? - What events constitute Force Majeure under this Agreement? - What is the term of the Agreement? model-index: - name: SentenceTransformer based on BAAI/bge-base-en-v1.5 results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.3333333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3333333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6666666666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3333333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06666666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06666666666666667 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3333333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3333333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6666666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4336766652213271 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3703703703703704 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3862433862433863 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.3333333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3333333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6666666666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3333333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06666666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06666666666666667 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3333333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3333333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6666666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4336766652213271 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3703703703703704 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.38703703703703707 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.3333333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3333333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6666666666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3333333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06666666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06666666666666667 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3333333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3333333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6666666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4336766652213271 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3703703703703704 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.38791423001949316 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.3333333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3333333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3333333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1111111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06666666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.10000000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3333333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3333333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5524123942573345 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.425925925925926 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.425925925925926 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.3333333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6666666666666666 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6666666666666666 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6666666666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3333333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2222222222222222 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13333333333333333 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06666666666666667 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3333333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6666666666666666 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6666666666666666 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6666666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4444444444444444 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.47008547008547 name: Cosine Map@100 --- # SentenceTransformer based on BAAI/bge-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("vineet10/fm") # Run inference sentences = [ 'The term of this Agreement shall continue until terminated by either party in accordance with', 'What is the term of the Agreement?', 'What events constitute Force Majeure under this Agreement?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3333 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.3333 | | cosine_accuracy@10 | 0.6667 | | cosine_precision@1 | 0.3333 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0667 | | cosine_precision@10 | 0.0667 | | cosine_recall@1 | 0.3333 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.3333 | | cosine_recall@10 | 0.6667 | | cosine_ndcg@10 | 0.4337 | | cosine_mrr@10 | 0.3704 | | **cosine_map@100** | **0.3862** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.3333 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.3333 | | cosine_accuracy@10 | 0.6667 | | cosine_precision@1 | 0.3333 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0667 | | cosine_precision@10 | 0.0667 | | cosine_recall@1 | 0.3333 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.3333 | | cosine_recall@10 | 0.6667 | | cosine_ndcg@10 | 0.4337 | | cosine_mrr@10 | 0.3704 | | **cosine_map@100** | **0.387** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3333 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.3333 | | cosine_accuracy@10 | 0.6667 | | cosine_precision@1 | 0.3333 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0667 | | cosine_precision@10 | 0.0667 | | cosine_recall@1 | 0.3333 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.3333 | | cosine_recall@10 | 0.6667 | | cosine_ndcg@10 | 0.4337 | | cosine_mrr@10 | 0.3704 | | **cosine_map@100** | **0.3879** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3333 | | cosine_accuracy@3 | 0.3333 | | cosine_accuracy@5 | 0.3333 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.3333 | | cosine_precision@3 | 0.1111 | | cosine_precision@5 | 0.0667 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.3333 | | cosine_recall@3 | 0.3333 | | cosine_recall@5 | 0.3333 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.5524 | | cosine_mrr@10 | 0.4259 | | **cosine_map@100** | **0.4259** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3333 | | cosine_accuracy@3 | 0.6667 | | cosine_accuracy@5 | 0.6667 | | cosine_accuracy@10 | 0.6667 | | cosine_precision@1 | 0.3333 | | cosine_precision@3 | 0.2222 | | cosine_precision@5 | 0.1333 | | cosine_precision@10 | 0.0667 | | cosine_recall@1 | 0.3333 | | cosine_recall@3 | 0.6667 | | cosine_recall@5 | 0.6667 | | cosine_recall@10 | 0.6667 | | cosine_ndcg@10 | 0.5 | | cosine_mrr@10 | 0.4444 | | **cosine_map@100** | **0.4701** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 26 training samples * Columns: context and question * Approximate statistics based on the first 1000 samples: | | context | question | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | context | question | |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | Answer: Deepak Babbar makes the final payment of Rs 2,60,000 at the time of quashing FIR | MOU? | | This Agreement is governed by the laws of Indiana, and any disputes arising out of or in | Which law governs this Agreement, and where would disputes be resolved? | | Answer: After the first motion, both parties must file petitions for quashing FIRs and | according to the MOU? | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:-----:|:----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0 | 0 | 0.4259 | 0.3879 | 0.3870 | 0.4701 | 0.3862 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.42.4 - PyTorch: 2.3.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```