--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.928 --- # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.3510 - Accuracy: 0.928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8416 | 0.99 | 35 | 1.6670 | 0.924 | | 1.4758 | 1.99 | 70 | 1.4302 | 0.926 | | 1.3787 | 2.98 | 105 | 1.3510 | 0.928 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3