dqnguyen commited on
Commit
5388b8d
·
1 Parent(s): 56e2f2b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -0
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #### Table of contents
3
+ 1. [Introduction](#introduction)
4
+ 2. [Using PhoBERT with `transformers`](#transformers)
5
+ - [Installation](#install2)
6
+ - [Pre-trained models](#models2)
7
+ - [Example usage](#usage2)
8
+ 3. [Using PhoBERT with `fairseq`](#fairseq)
9
+ 4. [Notes](#vncorenlp)
10
+
11
+ # <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese
12
+
13
+ Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam):
14
+
15
+ - Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance.
16
+ - PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference.
17
+
18
+ The general architecture and experimental results of PhoBERT can be found in our [paper](https://www.aclweb.org/anthology/2020.findings-emnlp.92/):
19
+
20
+ @inproceedings{phobert,
21
+ title = {{PhoBERT: Pre-trained language models for Vietnamese}},
22
+ author = {Dat Quoc Nguyen and Anh Tuan Nguyen},
23
+ booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},
24
+ year = {2020},
25
+ pages = {1037--1042}
26
+ }
27
+
28
+ **Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software.
29
+
30
+ ## <a name="transformers"></a> Using PhoBERT with `transformers`
31
+
32
+ ### Installation <a name="install2"></a>
33
+ - Install `transformers` with pip: `pip install transformers`, or [install `transformers` from source](https://huggingface.co/docs/transformers/installation#installing-from-source). <br />
34
+ Note that we merged a slow tokenizer for PhoBERT into the main `transformers` branch. The process of merging a fast tokenizer for PhoBERT is in the discussion, as mentioned in [this pull request](https://github.com/huggingface/transformers/pull/17254#issuecomment-1133932067). If users would like to utilize the fast tokenizer, the users might install `transformers` as follows:
35
+
36
+
37
+ ```
38
+ git clone --single-branch --branch fast_tokenizers_BARTpho_PhoBERT_BERTweet https://github.com/datquocnguyen/transformers.git
39
+ cd transformers
40
+ pip3 install -e .
41
+ ```
42
+
43
+ - Install `tokenizers` with pip: `pip3 install tokenizers`
44
+
45
+ ### Pre-trained models <a name="models2"></a>
46
+
47
+
48
+ Model | #params | Arch. | Max length | Pre-training data
49
+ ---|---|---|---|---
50
+ `vinai/phobert-base` | 135M | base | 256 | 20GB of Wikipedia and News texts
51
+ `vinai/phobert-large` | 370M | large | 256 | 20GB of Wikipedia and News texts
52
+ `vinai/phobert-base-v2` | 135M | base | 256 | 20GB of Wikipedia and News texts + 120GB of texts from OSCAR-2301
53
+
54
+ ### Example usage <a name="usage2"></a>
55
+
56
+ ```python
57
+ import torch
58
+ from transformers import AutoModel, AutoTokenizer
59
+
60
+ phobert = AutoModel.from_pretrained("vinai/phobert-base-v2")
61
+ tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
62
+
63
+ # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
64
+ sentence = 'Chúng_tôi là những nghiên_cứu_viên .'
65
+
66
+ input_ids = torch.tensor([tokenizer.encode(sentence)])
67
+
68
+ with torch.no_grad():
69
+ features = phobert(input_ids) # Models outputs are now tuples
70
+
71
+ ## With TensorFlow 2.0+:
72
+ # from transformers import TFAutoModel
73
+ # phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
74
+ ```
75
+
76
+
77
+ ## <a name="fairseq"></a> Using PhoBERT with `fairseq`
78
+
79
+ Please see details at [HERE](https://github.com/VinAIResearch/PhoBERT/blob/master/README_fairseq.md)!
80
+
81
+ ## <a name="vncorenlp"></a> Notes
82
+
83
+ In case the input texts are `raw`, i.e. without word segmentation, a word segmenter must be applied to produce word-segmented texts before feeding to PhoBERT. As PhoBERT employed the [RDRSegmenter](https://github.com/datquocnguyen/RDRsegmenter) from [VnCoreNLP](https://github.com/vncorenlp/VnCoreNLP) to pre-process the pre-training data (including [Vietnamese tone normalization](https://github.com/VinAIResearch/BARTpho/blob/main/VietnameseToneNormalization.md) and word and sentence segmentation), it is recommended to also use the same word segmenter for PhoBERT-based downstream applications w.r.t. the input raw texts.
84
+
85
+ #### Installation
86
+
87
+ pip install py_vncorenlp
88
+
89
+ #### Example usage <a name="example"></a>
90
+
91
+ ```python
92
+ import py_vncorenlp
93
+
94
+ # Automatically download VnCoreNLP components from the original repository
95
+ # and save them in some local machine folder
96
+ py_vncorenlp.download_model(save_dir='/absolute/path/to/vncorenlp')
97
+
98
+ # Load the word and sentence segmentation component
99
+ rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='/absolute/path/to/vncorenlp')
100
+
101
+ text = "Ông Nguyễn Khắc Chúc đang làm việc tại Đại học Quốc gia Hà Nội. Bà Lan, vợ ông Chúc, cũng làm việc tại đây."
102
+
103
+ output = rdrsegmenter.word_segment(text)
104
+
105
+ print(output)
106
+ # ['Ông Nguyễn_Khắc_Chúc đang làm_việc tại Đại_học Quốc_gia Hà_Nội .', 'Bà Lan , vợ ông Chúc , cũng làm_việc tại đây .']
107
+ ```
108
+
109
+ ## License
110
+
111
+ MIT License
112
+
113
+ Copyright (c) 2020 VinAI Research
114
+
115
+ Permission is hereby granted, free of charge, to any person obtaining a copy
116
+ of this software and associated documentation files (the "Software"), to deal
117
+ in the Software without restriction, including without limitation the rights
118
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
119
+ copies of the Software, and to permit persons to whom the Software is
120
+ furnished to do so, subject to the following conditions:
121
+
122
+ The above copyright notice and this permission notice shall be included in all
123
+ copies or substantial portions of the Software.
124
+
125
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
126
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
127
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
128
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
129
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
130
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
131
+ SOFTWARE.