qnguyen3 commited on
Commit
2c1e9ce
·
1 Parent(s): 8da1704

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -82
README.md DELETED
@@ -1,82 +0,0 @@
1
- ---
2
- base_model: vilm/VinaLLaMA-2.7B-800b
3
- tags:
4
- - generated_from_trainer
5
- model-index:
6
- - name: out-vinallama-fft-2.7b
7
- results: []
8
- ---
9
-
10
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
- should probably proofread and complete it, then remove this comment. -->
12
-
13
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
- # out-vinallama-fft-2.7b
15
-
16
- This model is a fine-tuned version of [vilm/VinaLLaMA-2.7B-800b](https://huggingface.co/vilm/VinaLLaMA-2.7B-800b) on the None dataset.
17
- It achieves the following results on the evaluation set:
18
- - Loss: 1.1028
19
-
20
- ## Model description
21
-
22
- More information needed
23
-
24
- ## Intended uses & limitations
25
-
26
- More information needed
27
-
28
- ## Training and evaluation data
29
-
30
- More information needed
31
-
32
- ## Training procedure
33
-
34
- ### Training hyperparameters
35
-
36
- The following hyperparameters were used during training:
37
- - learning_rate: 2e-05
38
- - train_batch_size: 4
39
- - eval_batch_size: 4
40
- - seed: 42
41
- - distributed_type: multi-GPU
42
- - num_devices: 4
43
- - gradient_accumulation_steps: 4
44
- - total_train_batch_size: 64
45
- - total_eval_batch_size: 16
46
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
- - lr_scheduler_type: cosine
48
- - lr_scheduler_warmup_steps: 100
49
- - num_epochs: 4
50
-
51
- ### Training results
52
-
53
- | Training Loss | Epoch | Step | Validation Loss |
54
- |:-------------:|:-----:|:----:|:---------------:|
55
- | 2.1202 | 0.0 | 1 | 2.0400 |
56
- | 1.3783 | 0.2 | 205 | 1.3514 |
57
- | 1.2539 | 0.4 | 410 | 1.2604 |
58
- | 1.2168 | 0.6 | 615 | 1.2119 |
59
- | 1.1739 | 0.8 | 820 | 1.1790 |
60
- | 1.1273 | 1.0 | 1025 | 1.1548 |
61
- | 1.0544 | 1.18 | 1230 | 1.1435 |
62
- | 1.032 | 1.38 | 1435 | 1.1296 |
63
- | 1.0114 | 1.58 | 1640 | 1.1182 |
64
- | 1.0188 | 1.78 | 1845 | 1.1079 |
65
- | 0.9877 | 1.98 | 2050 | 1.0994 |
66
- | 0.9981 | 2.16 | 2255 | 1.1081 |
67
- | 0.9505 | 2.36 | 2460 | 1.1030 |
68
- | 0.9936 | 2.57 | 2665 | 1.0984 |
69
- | 0.9076 | 2.77 | 2870 | 1.0924 |
70
- | 0.8569 | 2.97 | 3075 | 1.0888 |
71
- | 0.8902 | 3.15 | 3280 | 1.1067 |
72
- | 0.8285 | 3.35 | 3485 | 1.1041 |
73
- | 0.8617 | 3.55 | 3690 | 1.1036 |
74
- | 0.8393 | 3.75 | 3895 | 1.1028 |
75
-
76
-
77
- ### Framework versions
78
-
79
- - Transformers 4.34.1
80
- - Pytorch 2.0.1+cu118
81
- - Datasets 2.14.6
82
- - Tokenizers 0.14.1