File size: 2,101 Bytes
fa8398d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch
from io import BytesIO
import base64
class EndpointHandler:
def __init__(self, model_dir):
self.model_id = "vikhyatk/moondream2"
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True)
self.tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True)
# Check if CUDA (GPU support) is available and then set the device to GPU or CPU
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
def preprocess_image(self, encoded_image):
"""Decode and preprocess the input image."""
decoded_image = base64.b64decode(encoded_image)
img = Image.open(BytesIO(decoded_image)).convert("RGB")
return img
def __call__(self, data):
"""Handle the incoming request."""
try:
# Extract the inputs from the data
inputs = data.pop("inputs", data)
input_image = inputs['image']
question = inputs.get('question', "move to the red ball")
# Preprocess the image
img = self.preprocess_image(input_image)
# Perform inference
enc_image = self.model.encode_image(img).to(self.device)
answer = self.model.answer_question(enc_image, question, self.tokenizer)
# If the output is a tensor, move it back to CPU and convert to list
if isinstance(answer, torch.Tensor):
answer = answer.cpu().numpy().tolist()
# Create the response
response = {
"statusCode": 200,
"body": {
"answer": answer
}
}
return response
except Exception as e:
# Handle any errors
response = {
"statusCode": 500,
"body": {
"error": str(e)
}
}
return response |