tonywu71's picture
Update README.md
29325c0 verified
---
license: mit
library_name: colpali
base_model: HuggingFaceTB/SmolVLM-256M-Instruct
language:
- en
tags:
- colsmolvlm
- vidore-experimental
- vidore
---
# ColSmolVLM-256M-Instruct: Visual Retriever based on SmolVLM-256M-Instruct with ColBERT strategy
ColSmolVLM is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
It is a SmolVLM extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
This version is the untrained base version to guarantee deterministic projection layer initialization.
## Usage
> [!WARNING]
> This version should not be used: it is solely the base version useful for deterministic LoRA initialization.
## License
ColSmol's vision language backbone model (ColSmolVLM) is under `apache2.0` license. The adapters attached to the model are under MIT license.
## Contact
- Manuel Faysse: [email protected]
- Hugues Sibille: [email protected]
- Tony Wu: [email protected]
## Citation
If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```