victorivus commited on
Commit
13e1c0e
1 Parent(s): 75ef2cf

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1032.04 +/- 218.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b201f2c8fcc350ef0a4467a0be9b49dd5f67661130bf9de4eb1f0600bdc6cbb6
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9dcff77940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9dcff779d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9dcff77a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9dcff77af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9dcff77b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9dcff77c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9dcff77ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9dcff77d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9dcff77dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9dcff77e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9dcff77ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9dcff77f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9dcff74870>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1678294145535395205,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC8eOr/OZEG/Drq6vkhCJr8GIT8/HTFPvYmz4D77LYS+4Z2fPjGZHcD89O6+8kg0PCY5kL9gZ4S/8PBkPq2/fD67dP89QXORPyy4fD+83jG95Xnbvgnbjb/EX8y85vgmPm1d37+SW6w+2NXAv5EqnT8nSWA/lSyWv5IO+b/S6Wc/COFJvkhs4T+ZUwXAcsjdPpIKs7/hhZs+4406vpMLjD9P8iw/A0xMv8zcAT4ILtM/a0KwP8f2R77KooS+CSETwFHuDD8O9S0/Vjc4QCgVDUCdsxI/klusPtjVwL8ZflC/eDdzvuYXN7+dvZm+CxyUvqDNDb9xyNC99O+yvl/zlT6pqfa+gcPPvrI07L4V01k9qC/ovrSF+7/HyIk+whG5P8R+rT+kdJy8rXWFvW99MMDWQqO/folKv1Gacj/HcSY/nbMSP5JbrD7Y1cC/kSqdPwiv3D+f5Yq/ZQOTv6spK0CDd1W/a/nHP7656L/v1mK/yT2jP9KCsD8yjt6++KBJP9XirT/SqzVAdp4gP6GNKjzIZuy/nBt1PUxdmb+aaMY/SqswP0L5A79neFW/UHhuup2zEj+SW6w+aO0pPxl+UL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC7qYy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiy8VvQAAAABW//2/AAAAAGHyD74AAAAAloboPwAAAAA0gKW9AAAAAFi+6T8AAAAAtQsyOgAAAABGK/2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiGy/MwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNq23T0AAAAANYD7vwAAAACT96G9AAAAACNB9z8AAAAA1QPJPQAAAAAAyes/AAAAALJbwL0AAAAAWy4BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKoYLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICgrtA9AAAAAI7f5b8AAAAACAbZvQAAAABBsPA/AAAAAEM/5j0AAAAAz0X0PwAAAADnBlA9AAAAABCx8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEaoc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALm+YPQAAAABxMdu/AAAAAKOk/j0AAAAAeNTfPwAAAACzGCC9AAAAAF1a5D8AAAAA/wTFvAAAAABt+vG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZxER/ViF2MAWyUTegDjAF0lEdAq5IECFK02XV9lChoBkdAjshvDxb0OGgHTegDaAhHQKuV6bmU4aR1fZQoaAZHQJVQGSjgydpoB03oA2gIR0Crlsf51vETdX2UKGgGR0CXtq7TUiIMaAdN6ANoCEdAq5lbjin5z3V9lChoBkdAmCWE8aGYbGgHTegDaAhHQKugBN/OMVF1fZQoaAZHQJbCz4YaYNRoB03oA2gIR0CrotbPppvhdX2UKGgGR0CYNwbyH2ytaAdN6ANoCEdAq6O5/qgRLHV9lChoBkdAmC97iyY5UGgHTegDaAhHQKumVKT0QK91fZQoaAZHQJdyGIGhVVBoB03oA2gIR0CrryWGyon8dX2UKGgGR0CTpLOUMXrMaAdN6ANoCEdAq7OPvfCQ93V9lChoBkdAmC19/BnBcmgHTegDaAhHQKu0ecNH6M11fZQoaAZHQJE5XiS7oStoB03oA2gIR0CrtxGlImPYdX2UKGgGR0CWw9bp/wy7aAdN6ANoCEdAq73tfCyhSXV9lChoBkdAhS3leWv8qGgHTegDaAhHQKvA6ODJ2dN1fZQoaAZHQJMaimaYu01oB03oA2gIR0CrwcvgNwzddX2UKGgGR0CGtc8A7xNJaAdN6ANoCEdAq8RlaQmu1XV9lChoBkdAlfPlFMIu5GgHTegDaAhHQKvM52QGOdZ1fZQoaAZHQJSY1ZDArQRoB03oA2gIR0Cr0XqzJIUbdX2UKGgGR0CEcQs+V1OkaAdN6ANoCEdAq9LFR3u/lHV9lChoBkdAlp8xzijtX2gHTegDaAhHQKvVbi1Aqut1fZQoaAZHQJaTRB2OhkBoB03oA2gIR0Cr3Bt/e+EidX2UKGgGR0CU32DNyHVPaAdN6ANoCEdAq972PLgXM3V9lChoBkdAluZVWbPQfWgHTegDaAhHQKvf3IyTINp1fZQoaAZHQJb+xIatLctoB03oA2gIR0Cr4nAIY3vQdX2UKGgGR0CVv1oKlYU4aAdN6ANoCEdAq+p1YGMXJ3V9lChoBkdAksVUjopx3mgHTegDaAhHQKvu6jzqbBp1fZQoaAZHQJeUj3M6ikBoB03oA2gIR0Cr8EtqgyuZdX2UKGgGR0CL2XYPoV2zaAdN6ANoCEdAq/NYkxASnXV9lChoBkdAlh2XZ5AyEmgHTegDaAhHQKv6FcsUZel1fZQoaAZHQJgFGMKkVN5oB03oA2gIR0Cr/QJOWSlndX2UKGgGR0CXA21A7gbZaAdN6ANoCEdAq/3nAXVLBnV9lChoBkdAl8qK3I+4b2gHTegDaAhHQKwAdYxtYSx1fZQoaAZHQJgtv+T/yXloB03oA2gIR0CsB6JSR8txdX2UKGgGR0CXqNuK4x1xaAdN6ANoCEdArAvSX8fmtHV9lChoBkdAmIOF+EytWGgHTegDaAhHQKwNMPxQSBd1fZQoaAZHQJgFhLqUu+RoB03oA2gIR0CsEPTpxFRYdX2UKGgGR0CYkubh3qzJaAdN6ANoCEdArBewn2Iwd3V9lChoBkdAluZI4VARkGgHTegDaAhHQKwagKQ7tAt1fZQoaAZHQJgbiYZ2pyZoB03oA2gIR0CsG2Reb/fgdX2UKGgGR0CXMD8eS0SiaAdN6ANoCEdArB6HBeokzHV9lChoBkdAlZm14X40uWgHTegDaAhHQKwo8MrEtNB1fZQoaAZHQJW6OZa3ZwpoB03oA2gIR0CsLa3ztkWidX2UKGgGR0B6hrphWo3raAdN6ANoCEdArC8X3JxNqXV9lChoBkdAlfM1G0/nn2gHTegDaAhHQKwypUx20Rh1fZQoaAZHQHkwXkxREWtoB03oA2gIR0CsOXRYigTRdX2UKGgGR0CWhE5Rjz7NaAdN6ANoCEdArDxoHkcS5HV9lChoBkdAlJdocebNKWgHTegDaAhHQKw9Ui9Iwud1fZQoaAZHQJXiG+nIhhZoB03oA2gIR0CsQBB5Pdl/dX2UKGgGR0CR4T+kP+XJaAdN6ANoCEdArEdmkzoECHV9lChoBkdAiDLw/5ckdGgHTegDaAhHQKxLtgHeJpF1fZQoaAZHQJQ9mPS2H+JoB03oA2gIR0CsTRnu7YkFdX2UKGgGR0CR80K9PDYRaAdN6ANoCEdArFEHPVurInV9lChoBkdAi+ZJ5NXYDmgHTegDaAhHQKxX4KF7D2t1fZQoaAZHQJNzfNmlImRoB03oA2gIR0CsWskZR8+idX2UKGgGR0CVcnBoEjgRaAdN6ANoCEdArFuqDEm6XnV9lChoBkdAlm7I8Md92GgHTegDaAhHQKxeSV0Lc9J1fZQoaAZHQJYuIYht+CtoB03oA2gIR0CsZR2YnfEXdX2UKGgGR0CW2heiBXjmaAdN6ANoCEdArGkxeokzGnV9lChoBkdAiPJZL7Gec2gHTegDaAhHQKxqiZn+Q2d1fZQoaAZHQJbO4m2LHdZoB03oA2gIR0CsbprL6k6+dX2UKGgGR0CW6tcurZJ1aAdN6ANoCEdArHYANRWLgnV9lChoBkdAlcTIuTRplGgHTegDaAhHQKx5BTNt65Z1fZQoaAZHQJS+AnSfDk5oB03oA2gIR0CsefPllsgudX2UKGgGR0CVannssxwiaAdN6ANoCEdArHyZBsyi23V9lChoBkdAlgVaNIbwSmgHTegDaAhHQKyDs8NhE0B1fZQoaAZHQHYS0E9t/F1oB03oA2gIR0CsiAerdWQwdX2UKGgGR0B4nTukUKzBaAdN6ANoCEdArIlotYjjaXV9lChoBkdAlGTeTV2A5WgHTegDaAhHQKyNlikwevJ1fZQoaAZHQJERKSfUWmBoB03oA2gIR0CslQH3+MqCdX2UKGgGR0CWdZU3XI2gaAdN6ANoCEdArJf0AJb+tXV9lChoBkdAkwVU6gdwN2gHTegDaAhHQKyY504iosJ1fZQoaAZHQJdVWZG8VYZoB03oA2gIR0Csm5VWsA/+dX2UKGgGR0CVczE7W/ahaAdN6ANoCEdArKJ2Q8wHq3V9lChoBkdAlp4OWa+ev2gHTegDaAhHQKymR/0/W2B1fZQoaAZHQJbmXpIMBp5oB03oA2gIR0Csp6VB+nZTdX2UKGgGR0CW0ckDp1RtaAdN6ANoCEdArKu7F4s3AHV9lChoBkdAlfFR86V+qmgHTegDaAhHQKyzdFqi48V1fZQoaAZHQJWRY5dWyTpoB03oA2gIR0Cstmgx8D0UdX2UKGgGR0CU8F/47A+IaAdN6ANoCEdArLdXX5FgD3V9lChoBkdAlUsP9DQZ42gHTegDaAhHQKy5/w/gR9R1fZQoaAZHQJa1SYtxuKpoB03oA2gIR0CswNXpW3jNdX2UKGgGR0CVoWf3N9piaAdN6ANoCEdArMRnwRXfZXV9lChoBkdAk7sQu27Wd2gHTegDaAhHQKzFrv/BFd91fZQoaAZHQJQyy5paibloB03oA2gIR0CsyaCnP3SKdX2UKGgGR0CV05BMSK3vaAdN6ANoCEdArNHm5+Ytx3V9lChoBkdAkZb9UbT+emgHTegDaAhHQKzVEd6sySF1fZQoaAZHQJVoOBTXJ5poB03oA2gIR0Cs1geWWyC4dX2UKGgGR0CV9O6/IsAeaAdN6ANoCEdArNjVeY2KmHV9lChoBkdAf8sLl3hXKmgHTegDaAhHQKzgFmU4aP11fZQoaAZHQIna2kHlfZ5oB03oA2gIR0Cs47G9HtngdX2UKGgGR0CU0FQA+6iCaAdN6ANoCEdArOUFRvWH13V9lChoBkdAk/qZsfq5b2gHTegDaAhHQKzo846wMYx1fZQoaAZHQJPoaUhV2idoB03oA2gIR0Cs8TEHt4RmdX2UKGgGR0CRpXknTiKjaAdN6ANoCEdArPQuzMRpUXV9lChoBkdAk/LTK5kK/mgHTegDaAhHQKz1FCTlkpZ1fZQoaAZHQJJ7evW6K+BoB03oA2gIR0Cs97EYGdI5dX2UKGgGR0CSU4/h2nsLaAdN6ANoCEdArP578k2P1nV9lChoBkdAk4/D+NtIkWgHTegDaAhHQK0Bjrnkkrx1fZQoaAZHQJOKOuwHJLdoB03oA2gIR0CtAs+jVQQ+dX2UKGgGR0CTNRlAeJYUaAdN6ANoCEdArQaV+CsfaHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:727921f265d459e2095328d5ef1cc4e8cb65750f5890b10b39f4565fede10bb9
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b75b73d191a4e7b5300dd9af14ae82ee1648db712eb51248c13df3cab883bc1
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9dcff77940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9dcff779d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9dcff77a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9dcff77af0>", "_build": "<function ActorCriticPolicy._build at 0x7f9dcff77b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f9dcff77c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9dcff77ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9dcff77d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9dcff77dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9dcff77e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9dcff77ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9dcff77f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9dcff74870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678294145535395205, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAC8eOr/OZEG/Drq6vkhCJr8GIT8/HTFPvYmz4D77LYS+4Z2fPjGZHcD89O6+8kg0PCY5kL9gZ4S/8PBkPq2/fD67dP89QXORPyy4fD+83jG95Xnbvgnbjb/EX8y85vgmPm1d37+SW6w+2NXAv5EqnT8nSWA/lSyWv5IO+b/S6Wc/COFJvkhs4T+ZUwXAcsjdPpIKs7/hhZs+4406vpMLjD9P8iw/A0xMv8zcAT4ILtM/a0KwP8f2R77KooS+CSETwFHuDD8O9S0/Vjc4QCgVDUCdsxI/klusPtjVwL8ZflC/eDdzvuYXN7+dvZm+CxyUvqDNDb9xyNC99O+yvl/zlT6pqfa+gcPPvrI07L4V01k9qC/ovrSF+7/HyIk+whG5P8R+rT+kdJy8rXWFvW99MMDWQqO/folKv1Gacj/HcSY/nbMSP5JbrD7Y1cC/kSqdPwiv3D+f5Yq/ZQOTv6spK0CDd1W/a/nHP7656L/v1mK/yT2jP9KCsD8yjt6++KBJP9XirT/SqzVAdp4gP6GNKjzIZuy/nBt1PUxdmb+aaMY/SqswP0L5A79neFW/UHhuup2zEj+SW6w+aO0pPxl+UL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC7qYy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiy8VvQAAAABW//2/AAAAAGHyD74AAAAAloboPwAAAAA0gKW9AAAAAFi+6T8AAAAAtQsyOgAAAABGK/2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiGy/MwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNq23T0AAAAANYD7vwAAAACT96G9AAAAACNB9z8AAAAA1QPJPQAAAAAAyes/AAAAALJbwL0AAAAAWy4BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKoYLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICgrtA9AAAAAI7f5b8AAAAACAbZvQAAAABBsPA/AAAAAEM/5j0AAAAAz0X0PwAAAADnBlA9AAAAABCx8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEaoc1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALm+YPQAAAABxMdu/AAAAAKOk/j0AAAAAeNTfPwAAAACzGCC9AAAAAF1a5D8AAAAA/wTFvAAAAABt+vG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJZxER/ViF2MAWyUTegDjAF0lEdAq5IECFK02XV9lChoBkdAjshvDxb0OGgHTegDaAhHQKuV6bmU4aR1fZQoaAZHQJVQGSjgydpoB03oA2gIR0Crlsf51vETdX2UKGgGR0CXtq7TUiIMaAdN6ANoCEdAq5lbjin5z3V9lChoBkdAmCWE8aGYbGgHTegDaAhHQKugBN/OMVF1fZQoaAZHQJbCz4YaYNRoB03oA2gIR0CrotbPppvhdX2UKGgGR0CYNwbyH2ytaAdN6ANoCEdAq6O5/qgRLHV9lChoBkdAmC97iyY5UGgHTegDaAhHQKumVKT0QK91fZQoaAZHQJdyGIGhVVBoB03oA2gIR0CrryWGyon8dX2UKGgGR0CTpLOUMXrMaAdN6ANoCEdAq7OPvfCQ93V9lChoBkdAmC19/BnBcmgHTegDaAhHQKu0ecNH6M11fZQoaAZHQJE5XiS7oStoB03oA2gIR0CrtxGlImPYdX2UKGgGR0CWw9bp/wy7aAdN6ANoCEdAq73tfCyhSXV9lChoBkdAhS3leWv8qGgHTegDaAhHQKvA6ODJ2dN1fZQoaAZHQJMaimaYu01oB03oA2gIR0CrwcvgNwzddX2UKGgGR0CGtc8A7xNJaAdN6ANoCEdAq8RlaQmu1XV9lChoBkdAlfPlFMIu5GgHTegDaAhHQKvM52QGOdZ1fZQoaAZHQJSY1ZDArQRoB03oA2gIR0Cr0XqzJIUbdX2UKGgGR0CEcQs+V1OkaAdN6ANoCEdAq9LFR3u/lHV9lChoBkdAlp8xzijtX2gHTegDaAhHQKvVbi1Aqut1fZQoaAZHQJaTRB2OhkBoB03oA2gIR0Cr3Bt/e+EidX2UKGgGR0CU32DNyHVPaAdN6ANoCEdAq972PLgXM3V9lChoBkdAluZVWbPQfWgHTegDaAhHQKvf3IyTINp1fZQoaAZHQJb+xIatLctoB03oA2gIR0Cr4nAIY3vQdX2UKGgGR0CVv1oKlYU4aAdN6ANoCEdAq+p1YGMXJ3V9lChoBkdAksVUjopx3mgHTegDaAhHQKvu6jzqbBp1fZQoaAZHQJeUj3M6ikBoB03oA2gIR0Cr8EtqgyuZdX2UKGgGR0CL2XYPoV2zaAdN6ANoCEdAq/NYkxASnXV9lChoBkdAlh2XZ5AyEmgHTegDaAhHQKv6FcsUZel1fZQoaAZHQJgFGMKkVN5oB03oA2gIR0Cr/QJOWSlndX2UKGgGR0CXA21A7gbZaAdN6ANoCEdAq/3nAXVLBnV9lChoBkdAl8qK3I+4b2gHTegDaAhHQKwAdYxtYSx1fZQoaAZHQJgtv+T/yXloB03oA2gIR0CsB6JSR8txdX2UKGgGR0CXqNuK4x1xaAdN6ANoCEdArAvSX8fmtHV9lChoBkdAmIOF+EytWGgHTegDaAhHQKwNMPxQSBd1fZQoaAZHQJgFhLqUu+RoB03oA2gIR0CsEPTpxFRYdX2UKGgGR0CYkubh3qzJaAdN6ANoCEdArBewn2Iwd3V9lChoBkdAluZI4VARkGgHTegDaAhHQKwagKQ7tAt1fZQoaAZHQJgbiYZ2pyZoB03oA2gIR0CsG2Reb/fgdX2UKGgGR0CXMD8eS0SiaAdN6ANoCEdArB6HBeokzHV9lChoBkdAlZm14X40uWgHTegDaAhHQKwo8MrEtNB1fZQoaAZHQJW6OZa3ZwpoB03oA2gIR0CsLa3ztkWidX2UKGgGR0B6hrphWo3raAdN6ANoCEdArC8X3JxNqXV9lChoBkdAlfM1G0/nn2gHTegDaAhHQKwypUx20Rh1fZQoaAZHQHkwXkxREWtoB03oA2gIR0CsOXRYigTRdX2UKGgGR0CWhE5Rjz7NaAdN6ANoCEdArDxoHkcS5HV9lChoBkdAlJdocebNKWgHTegDaAhHQKw9Ui9Iwud1fZQoaAZHQJXiG+nIhhZoB03oA2gIR0CsQBB5Pdl/dX2UKGgGR0CR4T+kP+XJaAdN6ANoCEdArEdmkzoECHV9lChoBkdAiDLw/5ckdGgHTegDaAhHQKxLtgHeJpF1fZQoaAZHQJQ9mPS2H+JoB03oA2gIR0CsTRnu7YkFdX2UKGgGR0CR80K9PDYRaAdN6ANoCEdArFEHPVurInV9lChoBkdAi+ZJ5NXYDmgHTegDaAhHQKxX4KF7D2t1fZQoaAZHQJNzfNmlImRoB03oA2gIR0CsWskZR8+idX2UKGgGR0CVcnBoEjgRaAdN6ANoCEdArFuqDEm6XnV9lChoBkdAlm7I8Md92GgHTegDaAhHQKxeSV0Lc9J1fZQoaAZHQJYuIYht+CtoB03oA2gIR0CsZR2YnfEXdX2UKGgGR0CW2heiBXjmaAdN6ANoCEdArGkxeokzGnV9lChoBkdAiPJZL7Gec2gHTegDaAhHQKxqiZn+Q2d1fZQoaAZHQJbO4m2LHdZoB03oA2gIR0CsbprL6k6+dX2UKGgGR0CW6tcurZJ1aAdN6ANoCEdArHYANRWLgnV9lChoBkdAlcTIuTRplGgHTegDaAhHQKx5BTNt65Z1fZQoaAZHQJS+AnSfDk5oB03oA2gIR0CsefPllsgudX2UKGgGR0CVannssxwiaAdN6ANoCEdArHyZBsyi23V9lChoBkdAlgVaNIbwSmgHTegDaAhHQKyDs8NhE0B1fZQoaAZHQHYS0E9t/F1oB03oA2gIR0CsiAerdWQwdX2UKGgGR0B4nTukUKzBaAdN6ANoCEdArIlotYjjaXV9lChoBkdAlGTeTV2A5WgHTegDaAhHQKyNlikwevJ1fZQoaAZHQJERKSfUWmBoB03oA2gIR0CslQH3+MqCdX2UKGgGR0CWdZU3XI2gaAdN6ANoCEdArJf0AJb+tXV9lChoBkdAkwVU6gdwN2gHTegDaAhHQKyY504iosJ1fZQoaAZHQJdVWZG8VYZoB03oA2gIR0Csm5VWsA/+dX2UKGgGR0CVczE7W/ahaAdN6ANoCEdArKJ2Q8wHq3V9lChoBkdAlp4OWa+ev2gHTegDaAhHQKymR/0/W2B1fZQoaAZHQJbmXpIMBp5oB03oA2gIR0Csp6VB+nZTdX2UKGgGR0CW0ckDp1RtaAdN6ANoCEdArKu7F4s3AHV9lChoBkdAlfFR86V+qmgHTegDaAhHQKyzdFqi48V1fZQoaAZHQJWRY5dWyTpoB03oA2gIR0Cstmgx8D0UdX2UKGgGR0CU8F/47A+IaAdN6ANoCEdArLdXX5FgD3V9lChoBkdAlUsP9DQZ42gHTegDaAhHQKy5/w/gR9R1fZQoaAZHQJa1SYtxuKpoB03oA2gIR0CswNXpW3jNdX2UKGgGR0CVoWf3N9piaAdN6ANoCEdArMRnwRXfZXV9lChoBkdAk7sQu27Wd2gHTegDaAhHQKzFrv/BFd91fZQoaAZHQJQyy5paibloB03oA2gIR0CsyaCnP3SKdX2UKGgGR0CV05BMSK3vaAdN6ANoCEdArNHm5+Ytx3V9lChoBkdAkZb9UbT+emgHTegDaAhHQKzVEd6sySF1fZQoaAZHQJVoOBTXJ5poB03oA2gIR0Cs1geWWyC4dX2UKGgGR0CV9O6/IsAeaAdN6ANoCEdArNjVeY2KmHV9lChoBkdAf8sLl3hXKmgHTegDaAhHQKzgFmU4aP11fZQoaAZHQIna2kHlfZ5oB03oA2gIR0Cs47G9HtngdX2UKGgGR0CU0FQA+6iCaAdN6ANoCEdArOUFRvWH13V9lChoBkdAk/qZsfq5b2gHTegDaAhHQKzo846wMYx1fZQoaAZHQJPoaUhV2idoB03oA2gIR0Cs8TEHt4RmdX2UKGgGR0CRpXknTiKjaAdN6ANoCEdArPQuzMRpUXV9lChoBkdAk/LTK5kK/mgHTegDaAhHQKz1FCTlkpZ1fZQoaAZHQJJ7evW6K+BoB03oA2gIR0Cs97EYGdI5dX2UKGgGR0CSU4/h2nsLaAdN6ANoCEdArP578k2P1nV9lChoBkdAk4/D+NtIkWgHTegDaAhHQK0Bjrnkkrx1fZQoaAZHQJOKOuwHJLdoB03oA2gIR0CtAs+jVQQ+dX2UKGgGR0CTNRlAeJYUaAdN6ANoCEdArQaV+CsfaHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4d4702b979c91c76d96978519aaa068a4a4acb423d33dc477779cfa889ca043
3
+ size 1090290
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1032.0396453354974, "std_reward": 218.29350283554845, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T17:51:28.607651"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb86dcc819e92451c0afe2246e0267c81980803cf674f077970f209bdacae6c6
3
+ size 2136