File size: 9,592 Bytes
4b9e121
 
 
 
 
 
 
 
 
 
 
6e283a5
c6d06dd
 
 
 
 
 
 
 
 
 
 
5b69f6b
 
 
 
 
 
4daac5e
 
 
 
 
4b9e121
 
6e283a5
4b9e121
4e27d70
4daac5e
4b9e121
4e27d70
 
 
 
 
 
 
 
 
 
 
4b9e121
 
37c5e21
4b9e121
 
37c5e21
6910531
 
37c5e21
 
 
 
 
 
 
6910531
37c5e21
4b9e121
 
37c5e21
4b9e121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4daac5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: roberta-base-suicide-prediction-phr
  results:
  - task:
      type: text-classification
      name: Suicidal Tendency Prediction in text 
    dataset:
      type: vibhorag101/roberta-base-suicide-prediction-phr
      name: Suicide Prediction Dataset
      split: test
    metrics:
      - type: accuracy
        value: 0.9652972367116438
      - type: f1
        value: 0.9651921995935487
      - type: recall
        value: 0.966571403827834
      - type: precision
        value: 0.9638169257340242
datasets:
- vibhorag101/suicide_prediction_dataset_phr
language:
- en
library_name: transformers
---

# roberta-base-suicide-prediction-phr

This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on this [dataset](https://huggingface.co./datasets/vibhorag101/suicide_prediction_dataset_phr)   sourced from Reddit. 
It achieves the following results on the evaluation/validation set:
- Loss: 0.1543
- Accuracy: 0.9652972367116438
- Recall: 0.966571403827834
- Precision: 0.9638169257340242
- F1: 0.9651921995935487

It achieves the following result on validation partition of this updated [dataset](vibhorag101/phr_suicide_prediction_dataset_clean_light)
- Loss: 0.08761
- Accuracy: 0.97065
- Recall: 0.96652
- Precision: 0.97732
- F1: 0.97189

## Model description
This model is a finetune of roberta-base to detect suicidal tendencies in a given text.

## Training and evaluation data
- The dataset is sourced from Reddit and is available on [Kaggle](https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch).
- The dataset contains text with binary labels for suicide or non-suicide. 
- The dataset was cleaned, and following steps were applied
  - Converted to lowercase
  - Removed numbers and special characters.
  - Removed URLs, Emojis and accented characters.
  - Removed any word contractions.
  - Remove any extra white spaces and any extra spaces after a single space.
  - Removed any consecutive characters repeated more than 3 times.
  - Tokenised the text, then lemmatized it and then removed the stopwords (excluding not).
- The cleaned dataset can be found [here](https://huggingface.co./datasets/vibhorag101/suicide_prediction_dataset_phr)   
- The evaluation set had ~23000 samples, while the training set had ~186k samples, i.e. a 80:10:10 (train:test:val) split.

## Training procedure
- The model was trained on an RTXA5000 GPU.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy                         | Recall                         | Precision                         | F1                         |
|:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:|
| 0.2023        | 0.09  | 1000  | 0.1868          | {'accuracy': 0.9415010561710566} | {'recall': 0.9389451805663809} | {'precision': 0.943274752044545}  | {'f1': 0.9411049867627274} |
| 0.1792        | 0.17  | 2000  | 0.1465          | {'accuracy': 0.9528387291460103} | {'recall': 0.9615484541439335} | {'precision': 0.9446949714966392} | {'f1': 0.9530472103004292} |
| 0.1596        | 0.26  | 3000  | 0.1871          | {'accuracy': 0.9523645298961072} | {'recall': 0.9399844115354637} | {'precision': 0.9634297887448962} | {'f1': 0.9515627054749485} |
| 0.1534        | 0.34  | 4000  | 0.1563          | {'accuracy': 0.9518041126007674} | {'recall': 0.974971854161254}  | {'precision': 0.9314139157772814} | {'f1': 0.9526952695269527} |
| 0.1553        | 0.43  | 5000  | 0.1691          | {'accuracy': 0.9513730223735828} | {'recall': 0.93141075604053}   | {'precision': 0.9697051663510955} | {'f1': 0.950172276702889}  |
| 0.1537        | 0.52  | 6000  | 0.1347          | {'accuracy': 0.9568478682588266} | {'recall': 0.9644063393089114} | {'precision': 0.9496844618795839} | {'f1': 0.9569887852876723} |
| 0.1515        | 0.6   | 7000  | 0.1276          | {'accuracy': 0.9565461050997974} | {'recall': 0.9426690915389279} | {'precision': 0.9691924138545098} | {'f1': 0.9557467732022126} |
| 0.1453        | 0.69  | 8000  | 0.1351          | {'accuracy': 0.960210372030866}  | {'recall': 0.9589503767212263} | {'precision': 0.961031070994619}  | {'f1': 0.959989596428107}  |
| 0.1526        | 0.78  | 9000  | 0.1423          | {'accuracy': 0.9610725524852352} | {'recall': 0.9612020438209059} | {'precision': 0.9606196988056085} | {'f1': 0.9609107830829834} |
| 0.1437        | 0.86  | 10000 | 0.1365          | {'accuracy': 0.9599948269172738} | {'recall': 0.9625010825322594} | {'precision': 0.9573606684468946} | {'f1': 0.9599239937813093} |
| 0.1317        | 0.95  | 11000 | 0.1275          | {'accuracy': 0.9616760788032935} | {'recall': 0.9653589676972374} | {'precision': 0.9579752492265383} | {'f1': 0.9616529353405513} |
| 0.125         | 1.03  | 12000 | 0.1428          | {'accuracy': 0.9608138983489244} | {'recall': 0.9522819780029445} | {'precision': 0.9684692619341201} | {'f1': 0.9603074101567617} |
| 0.1135        | 1.12  | 13000 | 0.1627          | {'accuracy': 0.960770789326206}  | {'recall': 0.9544470425218672} | {'precision': 0.966330556773345}  | {'f1': 0.9603520390379923} |
| 0.1096        | 1.21  | 14000 | 0.1240          | {'accuracy': 0.9624520412122257} | {'recall': 0.9566987096215467} | {'precision': 0.9675074443860571} | {'f1': 0.962072719355541}  |
| 0.1213        | 1.29  | 15000 | 0.1502          | {'accuracy': 0.9616760788032935} | {'recall': 0.9659651857625358} | {'precision': 0.9574248927038627} | {'f1': 0.9616760788032936} |
| 0.1166        | 1.38  | 16000 | 0.1574          | {'accuracy': 0.958873992326594}  | {'recall': 0.9438815276695246} | {'precision': 0.9726907630522088} | {'f1': 0.9580696202531646} |
| 0.1214        | 1.47  | 17000 | 0.1626          | {'accuracy': 0.9562443419407682} | {'recall': 0.9773101238416905} | {'precision': 0.9374480810765908} | {'f1': 0.9569641721433114} |
| 0.1064        | 1.55  | 18000 | 0.1653          | {'accuracy': 0.9624089321895073} | {'recall': 0.9622412747899888} | {'precision': 0.9622412747899888} | {'f1': 0.9622412747899888} |
| 0.1046        | 1.64  | 19000 | 0.1608          | {'accuracy': 0.9640039660300901} | {'recall': 0.9697756993158396} | {'precision': 0.9584046559397467} | {'f1': 0.9640566484438896} |
| 0.1043        | 1.72  | 20000 | 0.1556          | {'accuracy': 0.960770789326206}  | {'recall': 0.9493374902572097} | {'precision': 0.9712058119961017} | {'f1': 0.9601471489883507} |
| 0.0995        | 1.81  | 21000 | 0.1646          | {'accuracy': 0.9602534810535845} | {'recall': 0.9752316619035247} | {'precision': 0.9465411448264268} | {'f1': 0.9606722402320423} |
| 0.1065        | 1.9   | 22000 | 0.1721          | {'accuracy': 0.9627106953485365} | {'recall': 0.9710747380271932} | {'precision': 0.9547854223433242} | {'f1': 0.9628611910179897} |
| 0.1204        | 1.98  | 23000 | 0.1214          | {'accuracy': 0.9629693494848471} | {'recall': 0.961028838659392}  | {'precision': 0.9644533286980705} | {'f1': 0.9627380384331756} |
| 0.0852        | 2.07  | 24000 | 0.1583          | {'accuracy': 0.9643919472345562} | {'recall': 0.9624144799515025} | {'precision': 0.9659278574532811} | {'f1': 0.9641679680721846} |
| 0.0812        | 2.16  | 25000 | 0.1594          | {'accuracy': 0.9635728758029055} | {'recall': 0.9572183251060882} | {'precision': 0.9692213258505787} | {'f1': 0.9631824321380331} |
| 0.0803        | 2.24  | 26000 | 0.1629          | {'accuracy': 0.9639177479846532} | {'recall': 0.9608556334978783} | {'precision': 0.9664634146341463} | {'f1': 0.963651365787988}  |
| 0.0832        | 2.33  | 27000 | 0.1570          | {'accuracy': 0.9631417855757209} | {'recall': 0.9658785831817788} | {'precision': 0.9603065266058206} | {'f1': 0.9630844954881052} |
| 0.0887        | 2.41  | 28000 | 0.1551          | {'accuracy': 0.9623227141440703} | {'recall': 0.9669178141508616} | {'precision': 0.9577936004117698} | {'f1': 0.9623340803309774} |
| 0.084         | 2.5   | 29000 | 0.1585          | {'accuracy': 0.9644350562572747} | {'recall': 0.9613752489824197} | {'precision': 0.96698606271777}   | {'f1': 0.9641724931602031} |
| 0.0807        | 2.59  | 30000 | 0.1601          | {'accuracy': 0.9639177479846532} | {'recall': 0.9699489044773534} | {'precision': 0.9580838323353293} | {'f1': 0.9639798597065025} |
| 0.079         | 2.67  | 31000 | 0.1645          | {'accuracy': 0.9628400224166919} | {'recall': 0.9558326838139777} | {'precision': 0.9690929844586882} | {'f1': 0.9624171607952564} |
| 0.0913        | 2.76  | 32000 | 0.1560          | {'accuracy': 0.9642626201664009} | {'recall': 0.964752749631939}  | {'precision': 0.9635011243729459} | {'f1': 0.9641265307888701} |
| 0.0927        | 2.85  | 33000 | 0.1491          | {'accuracy': 0.9649523645298961} | {'recall': 0.9659651857625358} | {'precision': 0.9637117677553136} | {'f1': 0.9648371610224472} |
| 0.0882        | 2.93  | 34000 | 0.1543          | {'accuracy': 0.9652972367116438} | {'recall': 0.966571403827834}  | {'precision': 0.9638169257340242} | {'f1': 0.9651921995935487} |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3