--- license: gpl-3.0 tags: - generated_from_trainer datasets: - mim_gold_ner metrics: - precision - recall - f1 - accuracy widget: - text: Systurnar Guðrún og Monique átu einar á McDonalds og horfðu á Stöð 2, þar glitti í Bruce Willis leika í Die Hard 2. base_model: vesteinn/IceBERT model-index: - name: IceBERT-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: mim_gold_ner type: mim_gold_ner args: mim-gold-ner metrics: - type: precision value: 0.9351994710160899 name: Precision - type: recall value: 0.9440427188786294 name: Recall - type: f1 value: 0.9396002878813043 name: F1 - type: accuracy value: 0.9920330921021648 name: Accuracy --- # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co./vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0347 - Precision: 0.9352 - Recall: 0.9440 - F1: 0.9396 - Accuracy: 0.9920 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0568 | 1.0 | 2929 | 0.0386 | 0.9114 | 0.9162 | 0.9138 | 0.9897 | | 0.0325 | 2.0 | 5858 | 0.0325 | 0.9300 | 0.9363 | 0.9331 | 0.9912 | | 0.0184 | 3.0 | 8787 | 0.0347 | 0.9352 | 0.9440 | 0.9396 | 0.9920 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3