File size: 2,344 Bytes
23bb47f 2e2adcc 0aeaa30 23bb47f 0aeaa30 23bb47f 0aeaa30 23bb47f 0aeaa30 23bb47f 0aeaa30 23bb47f 0aeaa30 23bb47f 0aeaa30 23bb47f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: gpl-3.0
tags:
- generated_from_trainer
datasets:
- mim_gold_ner
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: Systurnar Guðrún og Monique átu einar á McDonalds og horfðu á Stöð 2, þar
glitti í Bruce Willis leika í Die Hard 2.
base_model: vesteinn/IceBERT
model-index:
- name: IceBERT-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: mim_gold_ner
type: mim_gold_ner
args: mim-gold-ner
metrics:
- type: precision
value: 0.9351994710160899
name: Precision
- type: recall
value: 0.9440427188786294
name: Recall
- type: f1
value: 0.9396002878813043
name: F1
- type: accuracy
value: 0.9920330921021648
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IceBERT-finetuned-ner
This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co./vesteinn/IceBERT) on the mim_gold_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0347
- Precision: 0.9352
- Recall: 0.9440
- F1: 0.9396
- Accuracy: 0.9920
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0568 | 1.0 | 2929 | 0.0386 | 0.9114 | 0.9162 | 0.9138 | 0.9897 |
| 0.0325 | 2.0 | 5858 | 0.0325 | 0.9300 | 0.9363 | 0.9331 | 0.9912 |
| 0.0184 | 3.0 | 8787 | 0.0347 | 0.9352 | 0.9440 | 0.9396 | 0.9920 |
### Framework versions
- Transformers 4.11.0
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
|