Jo Kristian Bergum commited on
Commit
18e6702
·
1 Parent(s): 509e185

Import vespa-engine/col-minilm

Browse files
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MS Marco Ranking with ColBERT on Vespa.ai
2
+
3
+ Model is based on [ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT](https://arxiv.org/abs/2004.12832).
4
+ This BERT model is based on [cross-encoder/ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) and trained using the
5
+ original [ColBERT training routine](https://github.com/stanford-futuredata/ColBERT/).
6
+
7
+ This model has 22.3M trainable parameters and is approximately 2x faster than
8
+ [vespa-engine/colbert-medium](https://huggingface.co/vespa-engine/colbert-medium) and with better or on pair MRR@10 on dev.
9
+
10
+ The model weights have been tuned by training using a randomized sample of MS Marco training triplets
11
+ [MSMARCO-Passage-Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking).
12
+
13
+ To use this model with vespa.ai for MS Marco Passage Ranking, see
14
+ [MS Marco Ranking using Vespa.ai sample app](https://github.com/vespa-engine/sample-apps/tree/master/msmarco-ranking).
15
+
16
+ # MS Marco Passage Ranking
17
+
18
+ | MS Marco Passage Ranking Query Set | MRR@10 ColBERT on Vespa.ai |
19
+ |------------------------------------|----------------|
20
+ | Dev | 0.364 |
21
+
22
+ The MRR@10 on dev is achieved by re-ranking 1K retrieved by a dense retriever based on
23
+ [sentence-transformers/msmarco-MiniLM-L-6-v3](https://huggingface.co/sentence-transformers/msmarco-MiniLM-L-6-v3).
24
+
25
+ The official baseline BM25 ranking model MRR@10 0.16 on eval and 0.167 on dev question set.
26
+ See [MS Marco Passage Ranking Leaderboard](https://microsoft.github.io/msmarco/).
27
+
28
+ ## Export ColBERT query encoder to ONNX
29
+ We represent the ColBERT query encoder in the Vespa runtime, to map the textual query representation to the tensor representation. For this
30
+ we use Vespa's support for running ONNX models. One can use the following snippet to export the model for serving.
31
+
32
+ ```python
33
+ from transformers import BertModel
34
+ from transformers import BertPreTrainedModel
35
+ from transformers import BertConfig
36
+ import torch
37
+ import torch.nn as nn
38
+
39
+ class VespaColBERT(BertPreTrainedModel):
40
+
41
+ def __init__(self,config):
42
+ super().__init__(config)
43
+ self.bert = BertModel(config)
44
+ self.linear = nn.Linear(config.hidden_size, 32, bias=False)
45
+ self.init_weights()
46
+
47
+ def forward(self, input_ids, attention_mask):
48
+ Q = self.bert(input_ids,attention_mask=attention_mask)[0]
49
+ Q = self.linear(Q)
50
+ return torch.nn.functional.normalize(Q, p=2, dim=2)
51
+
52
+ colbert_query_encoder = VespaColBERT.from_pretrained("vespa-engine/col-minilm")
53
+
54
+ #Export model to ONNX for serving in Vespa
55
+
56
+ input_names = ["input_ids", "attention_mask"]
57
+ output_names = ["contextual"]
58
+ #input, max 32 query term
59
+ input_ids = torch.ones(1,32, dtype=torch.int64)
60
+ attention_mask = torch.ones(1,32,dtype=torch.int64)
61
+ args = (input_ids, attention_mask)
62
+ torch.onnx.export(colbert_query_encoder,
63
+ args=args,
64
+ f="query_encoder_colbert.onnx",
65
+ input_names = input_names,
66
+ output_names = output_names,
67
+ dynamic_axes = {
68
+ "input_ids": {0: "batch"},
69
+ "attention_mask": {0: "batch"},
70
+ "contextual": {0: "batch"},
71
+ },
72
+ opset_version=11)
73
+ ```
74
+
75
+ # Representing the model on Vespa.ai
76
+ See [Ranking with ONNX models](https://docs.vespa.ai/documentation/onnx.html) and [MS Marco Ranking sample app](https://github.com/vespa-engine/sample-apps/tree/master/msmarco-ranking)
77
+
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "minilm",
3
+ "architectures": [
4
+ "ColBERT"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 6,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity",
27
+ "transformers_version": "4.4.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e67cd33989d5633a4ffae5726dafee6d4fd3f42b9f888315746b50c64c9814a0
3
+ size 90949065
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "minilm", "special_tokens_map_file": "/Users/bergum/.cache/huggingface/transformers/3295d833faab1b0a5258c61d5d6ba3db7c2414aca8614a8503c6deb89fc00611.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "tokenizer_file": null}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff