--- language: - 'no' - nb - multilingual license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - NbAiLab/NCC_S metrics: - wer model-index: - name: Whisper Large Norwegian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: NbAiLab/NCC_S type: NbAiLab/NCC_S config: 'no' split: validation args: 'no' metrics: - type: wer value: 12.058465286236297 name: Wer --- # Whisper Large Norwegian This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) on the NbAiLab/NCC_S dataset. It achieves the following results on the evaluation set: - Loss: 0.2784 - Wer: 12.0585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 12 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6755 | 0.2 | 1000 | 0.3108 | 14.3118 | | 0.673 | 0.4 | 2000 | 0.3004 | 13.4592 | | 0.6378 | 0.6 | 3000 | 0.2865 | 13.0024 | | 0.5776 | 0.8 | 4000 | 0.2809 | 12.6675 | | 0.5962 | 1.0 | 5000 | 0.2784 | 12.0585 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.11.0