verneylmavt commited on
Commit
670f757
·
verified ·
1 Parent(s): 763833e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - stanfordnlp/imdb
5
+ language:
6
+ - en
7
+ base_model:
8
+ - google-bert/bert-base-uncased
9
+ pipeline_tag: text-classification
10
+ tags:
11
+ - IMDB
12
+ - Sentiment Analysis
13
+ ---
14
+ # BERT-Based Sentiment Analysis Models
15
+
16
+ ## Model Description
17
+
18
+ This repository contains two versions of BERT-based models fine-tuned for sentiment analysis tasks:
19
+
20
+ - **BERT-1**: Fine-tuned on the IMDB movie reviews dataset.
21
+ - **BERT-2**: Fine-tuned on a combined dataset of IMDB movie reviews dataset and Twitter comments.
22
+
23
+ Both models are based on the `bert-base-uncased` pre-trained model from Hugging Face's Transformers library.
24
+
25
+ ## Intended Use
26
+
27
+ These models are intended for binary sentiment analysis of English text data. They can be used to classify text into positive or negative sentiment categories.
28
+
29
+ ### Loading the Models
30
+
31
+ ```python
32
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
33
+
34
+ # Load BERT-1
35
+ tokenizer_bert1 = AutoTokenizer.from_pretrained("verneylmavt/bert-base-uncased_sentiment-analysis/bert-1")
36
+ model_bert1 = AutoModelForSequenceClassification.from_pretrained("verneylmavt/bert-base-uncased_sentiment-analysis/bert-1")
37
+
38
+ # Load BERT-2
39
+ tokenizer_bert2 = AutoTokenizer.from_pretrained("verneylmavt/bert-base-uncased_sentiment-analysis/bert-2")
40
+ model_bert2 = AutoModelForSequenceClassification.from_pretrained("verneylmavt/bert-base-uncased_sentiment-analysis/bert-2")
41
+ ```
42
+
43
+ ### Performing Sentiment Analysis
44
+
45
+ ```python
46
+ from transformers import pipeline
47
+
48
+ # Initialize pipelines
49
+ sentiment_pipeline_bert1 = pipeline("sentiment-analysis", model=model_bert1, tokenizer=tokenizer_bert1)
50
+ sentiment_pipeline_bert2 = pipeline("sentiment-analysis", model=model_bert2, tokenizer=tokenizer_bert2)
51
+
52
+ # Sample text
53
+ text = "I absolutely loved this product! It exceeded my expectations."
54
+
55
+ # Get predictions
56
+ result_bert1 = sentiment_pipeline_bert1(text)
57
+ result_bert2 = sentiment_pipeline_bert2(text)
58
+
59
+ print("BERT-1 Prediction:", result_bert1)
60
+ print("BERT-2 Prediction:", result_bert2)
61
+ ```
62
+
63
+ ## Training Details
64
+
65
+ ### BERT-1
66
+
67
+ - **Dataset**: [IMDB Movie Reviews Dataset](https://ai.stanford.edu/~amaas/data/sentiment/)
68
+ - **Objective**: Binary sentiment classification (positive/negative)
69
+ - **Optimizer**: AdamW with a learning rate `lr` (value unspecified)
70
+ - **Scheduler**: Linear scheduler with warmup (`get_linear_schedule_with_warmup`)
71
+ - **Epochs**: `num_epochs = 3`
72
+ - **Device**: Trained on GPU if available
73
+ - **Metrics Monitored**: Training loss, training accuracy, testing accuracy per epoch
74
+
75
+ ### BERT-2
76
+
77
+ - **Dataset**:
78
+ - [IMDB Movie Reviews Dataset](https://ai.stanford.edu/~amaas/data/sentiment/)
79
+ - [Twitter Comment - Sentiment Analysis Dataset](https://www.kaggle.com/datasets/abhi8923shriv/sentiment-analysis-dataset)
80
+ - **Objective**: Binary sentiment classification (positive/negative)
81
+ - **Optimizer**: AdamW with weight decay (`0.01`) and parameters requiring gradients
82
+ - **Scheduler**: Linear scheduler with warmup (`10%` of total steps)
83
+ - **Gradient Clipping**: Applied with `max_norm=1.0`
84
+ - **Early Stopping**: Implemented with a patience of `2` epochs without improvement in validation loss
85
+ - **Epochs**: `num_epochs = 3`, training may stop early due to early stopping
86
+ - **Device**: Trained on GPU if available
87
+ - **Metrics Monitored**: Training loss, training accuracy, validation loss, validation accuracy per epoch
88
+
89
+ ## Limitations and Biases
90
+
91
+ - **Data Bias**: The models are trained on specific datasets, which may contain inherent biases such as demographic or cultural biases.
92
+ - **Language Support**: Only supports English language text.
93
+ - **Generalization**: Performance may degrade on text significantly different from the training data (e.g., slang, jargon).
94
+ - **Ethical Considerations**: Users should be cautious of potential biases in predictions and should not use the model for critical decisions without human oversight.
95
+
96
+ ## License
97
+
98
+ The models are distributed under the same license as the original `bert-base-uncased` model ([Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)).
99
+
100
+ ## Acknowledgements
101
+
102
+ - Thanks to the Hugging Face team for providing the Transformers library and model hosting.
103
+ - The IMDB dataset is made available by [Maas et al.](https://ai.stanford.edu/~amaas/data/sentiment/) under a [Creative Commons Attribution-NonCommercial 3.0 Unported License](https://creativecommons.org/licenses/by-nc/3.0/).
104
+
105
+ ---
106
+
107
+ **Disclaimer**: The models are provided "as is" without warranty of any kind. The author is not responsible for any outcomes resulting from the use of these models.