Upload 4 files
Browse files
client.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
# Send prompt to the tokenizer service
|
4 |
+
prompt = "Once upon a time"
|
5 |
+
tokenizer_response = requests.post('http://localhost:5001/tokenize', json={'prompt': prompt})
|
6 |
+
input_ids = tokenizer_response.json()['input_ids']
|
7 |
+
|
8 |
+
# Send tokenized input to the model service
|
9 |
+
model_response = requests.post('http://localhost:5002/generate', json={'input_ids': input_ids})
|
10 |
+
output_ids = model_response.json()['output_ids']
|
11 |
+
|
12 |
+
# Send output IDs to the decoder service
|
13 |
+
decoder_response = requests.post('http://localhost:5003/decode', json={'output_ids': output_ids})
|
14 |
+
generated_text = decoder_response.json()['generated_text']
|
15 |
+
|
16 |
+
print("Generated Text:", generated_text)
|
decode.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
|
4 |
+
app = Flask(__name__)
|
5 |
+
|
6 |
+
# Load the tokenizer for decoding
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("verbalyze/Text2Text_Conversation_Pretrained_V2__model")
|
8 |
+
|
9 |
+
@app.route('/decode', methods=['POST'])
|
10 |
+
def decode():
|
11 |
+
data = request.json
|
12 |
+
output_ids = data.get('output_ids')
|
13 |
+
|
14 |
+
# Decode the output IDs
|
15 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
16 |
+
|
17 |
+
return jsonify({'generated_text': generated_text})
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
app.run(host='0.0.0.0', port=5003)
|
model.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("verbalyze/Text2Text_Conversation_Pretrained_V2__model")
|
9 |
+
|
10 |
+
@app.route('/generate', methods=['POST'])
|
11 |
+
def generate():
|
12 |
+
data = request.json
|
13 |
+
input_ids = torch.tensor(data.get('input_ids'))
|
14 |
+
|
15 |
+
# Generate text from input IDs
|
16 |
+
output_ids = model.generate(input_ids, max_length=50)
|
17 |
+
|
18 |
+
return jsonify({'output_ids': output_ids.tolist()})
|
19 |
+
|
20 |
+
if __name__ == '__main__':
|
21 |
+
app.run(host='0.0.0.0', port=5002)
|
tokenizer.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
|
4 |
+
app = Flask(__name__)
|
5 |
+
|
6 |
+
# Load tokenizer
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("verbalyze/Text2Text_Conversation_Pretrained_V2__model")
|
8 |
+
|
9 |
+
@app.route('/tokenize', methods=['POST'])
|
10 |
+
def tokenize():
|
11 |
+
data = request.json
|
12 |
+
prompt = data.get("prompt", "")
|
13 |
+
|
14 |
+
if not prompt:
|
15 |
+
return jsonify({"error": "No prompt provided"}), 400
|
16 |
+
|
17 |
+
# Tokenize the prompt
|
18 |
+
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.tolist()
|
19 |
+
|
20 |
+
return jsonify({"input_ids": input_ids})
|
21 |
+
|
22 |
+
if __name__ == '__main__':
|
23 |
+
app.run(host='0.0.0.0', port=5001)
|