Vikrantyadav11234 commited on
Commit
91176fd
·
verified ·
1 Parent(s): 58055e2

Upload 4 files

Browse files
Files changed (4) hide show
  1. client.py +16 -0
  2. decode.py +20 -0
  3. model.py +21 -0
  4. tokenizer.py +23 -0
client.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+
3
+ # Send prompt to the tokenizer service
4
+ prompt = "Once upon a time"
5
+ tokenizer_response = requests.post('http://localhost:5001/tokenize', json={'prompt': prompt})
6
+ input_ids = tokenizer_response.json()['input_ids']
7
+
8
+ # Send tokenized input to the model service
9
+ model_response = requests.post('http://localhost:5002/generate', json={'input_ids': input_ids})
10
+ output_ids = model_response.json()['output_ids']
11
+
12
+ # Send output IDs to the decoder service
13
+ decoder_response = requests.post('http://localhost:5003/decode', json={'output_ids': output_ids})
14
+ generated_text = decoder_response.json()['generated_text']
15
+
16
+ print("Generated Text:", generated_text)
decode.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from transformers import AutoTokenizer
3
+
4
+ app = Flask(__name__)
5
+
6
+ # Load the tokenizer for decoding
7
+ tokenizer = AutoTokenizer.from_pretrained("verbalyze/Text2Text_Conversation_Pretrained_V2__model")
8
+
9
+ @app.route('/decode', methods=['POST'])
10
+ def decode():
11
+ data = request.json
12
+ output_ids = data.get('output_ids')
13
+
14
+ # Decode the output IDs
15
+ generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
16
+
17
+ return jsonify({'generated_text': generated_text})
18
+
19
+ if __name__ == '__main__':
20
+ app.run(host='0.0.0.0', port=5003)
model.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from transformers import AutoModelForCausalLM
3
+ import torch
4
+
5
+ app = Flask(__name__)
6
+
7
+ # Load the model
8
+ model = AutoModelForCausalLM.from_pretrained("verbalyze/Text2Text_Conversation_Pretrained_V2__model")
9
+
10
+ @app.route('/generate', methods=['POST'])
11
+ def generate():
12
+ data = request.json
13
+ input_ids = torch.tensor(data.get('input_ids'))
14
+
15
+ # Generate text from input IDs
16
+ output_ids = model.generate(input_ids, max_length=50)
17
+
18
+ return jsonify({'output_ids': output_ids.tolist()})
19
+
20
+ if __name__ == '__main__':
21
+ app.run(host='0.0.0.0', port=5002)
tokenizer.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ from transformers import AutoTokenizer
3
+
4
+ app = Flask(__name__)
5
+
6
+ # Load tokenizer
7
+ tokenizer = AutoTokenizer.from_pretrained("verbalyze/Text2Text_Conversation_Pretrained_V2__model")
8
+
9
+ @app.route('/tokenize', methods=['POST'])
10
+ def tokenize():
11
+ data = request.json
12
+ prompt = data.get("prompt", "")
13
+
14
+ if not prompt:
15
+ return jsonify({"error": "No prompt provided"}), 400
16
+
17
+ # Tokenize the prompt
18
+ input_ids = tokenizer(prompt, return_tensors='pt').input_ids.tolist()
19
+
20
+ return jsonify({"input_ids": input_ids})
21
+
22
+ if __name__ == '__main__':
23
+ app.run(host='0.0.0.0', port=5001)