--- license: mit base_model: xlnet-large-cased tags: - generated_from_keras_callback model-index: - name: vedantjumle/xlnet-1 results: [] --- # vedantjumle/xlnet-1 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co./xlnet-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5132 - Validation Loss: 0.5293 - Train Accuracy: 0.89 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 5.1007 | 4.9565 | 0.0133 | 0 | | 5.0503 | 4.8870 | 0.0367 | 1 | | 4.9095 | 4.6674 | 0.07 | 2 | | 4.5990 | 4.1706 | 0.2033 | 3 | | 4.0403 | 3.4616 | 0.4267 | 4 | | 3.2648 | 2.6274 | 0.6033 | 5 | | 2.5315 | 1.8851 | 0.71 | 6 | | 1.8938 | 1.4084 | 0.8033 | 7 | | 1.3599 | 1.0397 | 0.84 | 8 | | 0.9752 | 0.7675 | 0.8667 | 9 | | 0.6995 | 0.6496 | 0.8667 | 10 | | 0.5132 | 0.5293 | 0.89 | 11 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.14.1