--- base_model: BAAI/bge-base-en-v1.5 language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:1K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'ile katod ma duodioda?', 'kto nosi mantyle?', 'w jakim celu nowożeńcom w Korei wręcza się injeolmi?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.2043 | | cosine_accuracy@3 | 0.5024 | | cosine_accuracy@5 | 0.6803 | | cosine_accuracy@10 | 0.7548 | | cosine_precision@1 | 0.2043 | | cosine_precision@3 | 0.1675 | | cosine_precision@5 | 0.1361 | | cosine_precision@10 | 0.0755 | | cosine_recall@1 | 0.2043 | | cosine_recall@3 | 0.5024 | | cosine_recall@5 | 0.6803 | | cosine_recall@10 | 0.7548 | | cosine_ndcg@10 | 0.4742 | | cosine_mrr@10 | 0.3839 | | **cosine_map@100** | **0.391** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1947 | | cosine_accuracy@3 | 0.4928 | | cosine_accuracy@5 | 0.6635 | | cosine_accuracy@10 | 0.7548 | | cosine_precision@1 | 0.1947 | | cosine_precision@3 | 0.1643 | | cosine_precision@5 | 0.1327 | | cosine_precision@10 | 0.0755 | | cosine_recall@1 | 0.1947 | | cosine_recall@3 | 0.4928 | | cosine_recall@5 | 0.6635 | | cosine_recall@10 | 0.7548 | | cosine_ndcg@10 | 0.4648 | | cosine_mrr@10 | 0.3723 | | **cosine_map@100** | **0.3783** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.1899 | | cosine_accuracy@3 | 0.4543 | | cosine_accuracy@5 | 0.6058 | | cosine_accuracy@10 | 0.7067 | | cosine_precision@1 | 0.1899 | | cosine_precision@3 | 0.1514 | | cosine_precision@5 | 0.1212 | | cosine_precision@10 | 0.0707 | | cosine_recall@1 | 0.1899 | | cosine_recall@3 | 0.4543 | | cosine_recall@5 | 0.6058 | | cosine_recall@10 | 0.7067 | | cosine_ndcg@10 | 0.4377 | | cosine_mrr@10 | 0.3523 | | **cosine_map@100** | **0.359** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1851 | | cosine_accuracy@3 | 0.4375 | | cosine_accuracy@5 | 0.5481 | | cosine_accuracy@10 | 0.6442 | | cosine_precision@1 | 0.1851 | | cosine_precision@3 | 0.1458 | | cosine_precision@5 | 0.1096 | | cosine_precision@10 | 0.0644 | | cosine_recall@1 | 0.1851 | | cosine_recall@3 | 0.4375 | | cosine_recall@5 | 0.5481 | | cosine_recall@10 | 0.6442 | | cosine_ndcg@10 | 0.4084 | | cosine_mrr@10 | 0.3332 | | **cosine_map@100** | **0.3393** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1731 | | cosine_accuracy@3 | 0.3389 | | cosine_accuracy@5 | 0.4255 | | cosine_accuracy@10 | 0.5144 | | cosine_precision@1 | 0.1731 | | cosine_precision@3 | 0.113 | | cosine_precision@5 | 0.0851 | | cosine_precision@10 | 0.0514 | | cosine_recall@1 | 0.1731 | | cosine_recall@3 | 0.3389 | | cosine_recall@5 | 0.4255 | | cosine_recall@10 | 0.5144 | | cosine_ndcg@10 | 0.3337 | | cosine_mrr@10 | 0.2769 | | **cosine_map@100** | **0.2853** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 3,738 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | Rynek Kolumna Matki Boskiej, tzw. Kolumna Maryjna wykonana w latach 1725-1727 przez Johanna Melchiora Österreicha. | kto jest autorem kolumny maryjnej na raciborskim rynku? | | Chleb razowy jest ciemniejszy i zawiera większą ilość błonnika oraz składników mineralnych niż chleb biały (pytlowy, czyli wypiekany z mąki przesiewanej przez pytel), bowiem jest w nim większy udział drobin pochodzących z łupin ziarna, gdzie gromadzą się te składniki. | które składniki razowego chleba odpowiadają za jego walory zdrowotne? | | Najgłębsza znana studnia krasowa to jaskinia Vrtoglavica w Słowenii o głębokości ponad 600 metrów. | ile metrów głębokości mierzy studnia na podwórzu klasztoru w Czernej? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.6838 | 10 | 6.5594 | - | - | - | - | - | | 0.9573 | 14 | - | 0.3319 | 0.3751 | 0.3955 | 0.2618 | 0.4033 | | 1.3675 | 20 | 4.2206 | - | - | - | - | - | | 1.9829 | 29 | - | 0.3324 | 0.3591 | 0.3807 | 0.2833 | 0.3946 | | 2.0513 | 30 | 3.3414 | - | - | - | - | - | | 2.7350 | 40 | 2.9757 | - | - | - | - | - | | 2.9402 | 43 | - | 0.3375 | 0.3570 | 0.3805 | 0.2840 | 0.3905 | | 3.4188 | 50 | 2.8884 | - | - | - | - | - | | **3.8291** | **56** | **-** | **0.3393** | **0.359** | **0.3783** | **0.2853** | **0.391** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.2 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.3.1 - Accelerate: 0.27.2 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```