--- base_model: BAAI/bge-base-en-v1.5 language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:1K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Herkules na rozstajach', 'jak zinterpretować wymowę obrazu Herkules na rozstajach?', 'Dowódcą grupy był Wiaczesław Razumowicz ps. „Chmara”.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1731 | | cosine_accuracy@3 | 0.4615 | | cosine_accuracy@5 | 0.6226 | | cosine_accuracy@10 | 0.7356 | | cosine_precision@1 | 0.1731 | | cosine_precision@3 | 0.1538 | | cosine_precision@5 | 0.1245 | | cosine_precision@10 | 0.0736 | | cosine_recall@1 | 0.1731 | | cosine_recall@3 | 0.4615 | | cosine_recall@5 | 0.6226 | | cosine_recall@10 | 0.7356 | | cosine_ndcg@10 | 0.4434 | | cosine_mrr@10 | 0.3505 | | **cosine_map@100** | **0.3574** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1683 | | cosine_accuracy@3 | 0.4519 | | cosine_accuracy@5 | 0.601 | | cosine_accuracy@10 | 0.7091 | | cosine_precision@1 | 0.1683 | | cosine_precision@3 | 0.1506 | | cosine_precision@5 | 0.1202 | | cosine_precision@10 | 0.0709 | | cosine_recall@1 | 0.1683 | | cosine_recall@3 | 0.4519 | | cosine_recall@5 | 0.601 | | cosine_recall@10 | 0.7091 | | cosine_ndcg@10 | 0.4296 | | cosine_mrr@10 | 0.3406 | | **cosine_map@100** | **0.3485** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1923 | | cosine_accuracy@3 | 0.4543 | | cosine_accuracy@5 | 0.5913 | | cosine_accuracy@10 | 0.6899 | | cosine_precision@1 | 0.1923 | | cosine_precision@3 | 0.1514 | | cosine_precision@5 | 0.1183 | | cosine_precision@10 | 0.069 | | cosine_recall@1 | 0.1923 | | cosine_recall@3 | 0.4543 | | cosine_recall@5 | 0.5913 | | cosine_recall@10 | 0.6899 | | cosine_ndcg@10 | 0.4311 | | cosine_mrr@10 | 0.3488 | | **cosine_map@100** | **0.3561** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1635 | | cosine_accuracy@3 | 0.4159 | | cosine_accuracy@5 | 0.5168 | | cosine_accuracy@10 | 0.5986 | | cosine_precision@1 | 0.1635 | | cosine_precision@3 | 0.1386 | | cosine_precision@5 | 0.1034 | | cosine_precision@10 | 0.0599 | | cosine_recall@1 | 0.1635 | | cosine_recall@3 | 0.4159 | | cosine_recall@5 | 0.5168 | | cosine_recall@10 | 0.5986 | | cosine_ndcg@10 | 0.3764 | | cosine_mrr@10 | 0.3052 | | **cosine_map@100** | **0.3152** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1659 | | cosine_accuracy@3 | 0.351 | | cosine_accuracy@5 | 0.4399 | | cosine_accuracy@10 | 0.5288 | | cosine_precision@1 | 0.1659 | | cosine_precision@3 | 0.117 | | cosine_precision@5 | 0.088 | | cosine_precision@10 | 0.0529 | | cosine_recall@1 | 0.1659 | | cosine_recall@3 | 0.351 | | cosine_recall@5 | 0.4399 | | cosine_recall@10 | 0.5288 | | cosine_ndcg@10 | 0.3382 | | cosine_mrr@10 | 0.278 | | **cosine_map@100** | **0.2877** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 3,738 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------| | Londyńska premiera w Ambassadors Theatre na londyńskim West Endzie miała miejsce 25 listopada 1952 roku, a przedstawione grane jest do dziś (od 1974 r.) w sąsiednim St Martin's Theatre. W Polsce była wystawiana m.in. w Teatrze Nowym w Zabrzu. | w którym londyńskim muzeum wystawiana była instalacja My Bed? | | Theridion grallator osiąga długość 5 mm. U niektórych postaci na żółtym odwłoku występuje wzór przypominający uśmiechniętą lub śmiejącą się twarz klowna. | które pająki noszą na grzbiecie wzór przypominający uśmiechniętego klauna? | | W 1998 w wyniku sporów o wytyczenie granicy między dwoma państwami wybuchła wojna erytrejsko-etiopska. Zakończyła się porozumieniem zawartym w Algierze 12 grudnia 2000. Od tego czasu strefa graniczna jest patrolowana przez siły pokojowe ONZ. | jakie były skutki wojny erytrejsko-etiopskiej? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 10 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.0684 | 1 | 7.2706 | - | - | - | - | - | | 0.1368 | 2 | 8.2776 | - | - | - | - | - | | 0.2051 | 3 | 7.1399 | - | - | - | - | - | | 0.2735 | 4 | 6.6905 | - | - | - | - | - | | 0.3419 | 5 | 6.735 | - | - | - | - | - | | 0.4103 | 6 | 7.0537 | - | - | - | - | - | | 0.4786 | 7 | 6.871 | - | - | - | - | - | | 0.5470 | 8 | 6.7277 | - | - | - | - | - | | 0.6154 | 9 | 5.9853 | - | - | - | - | - | | 0.6838 | 10 | 6.0518 | - | - | - | - | - | | 0.7521 | 11 | 5.8291 | - | - | - | - | - | | 0.8205 | 12 | 5.0064 | - | - | - | - | - | | 0.8889 | 13 | 4.8572 | - | - | - | - | - | | 0.9573 | 14 | 5.1899 | 0.2812 | 0.3335 | 0.3486 | 0.2115 | 0.3639 | | 1.0256 | 15 | 4.2996 | - | - | - | - | - | | 1.0940 | 16 | 4.1475 | - | - | - | - | - | | 1.1624 | 17 | 4.6174 | - | - | - | - | - | | 1.2308 | 18 | 4.394 | - | - | - | - | - | | 1.2991 | 19 | 4.0255 | - | - | - | - | - | | 1.3675 | 20 | 3.9722 | - | - | - | - | - | | 1.4359 | 21 | 3.9509 | - | - | - | - | - | | 1.5043 | 22 | 3.7674 | - | - | - | - | - | | 1.5726 | 23 | 3.7572 | - | - | - | - | - | | 1.6410 | 24 | 3.9463 | - | - | - | - | - | | 1.7094 | 25 | 3.7151 | - | - | - | - | - | | 1.7778 | 26 | 3.7771 | - | - | - | - | - | | 1.8462 | 27 | 3.5228 | - | - | - | - | - | | 1.9145 | 28 | 2.7906 | - | - | - | - | - | | 1.9829 | 29 | 3.4555 | 0.3164 | 0.3529 | 0.3641 | 0.2636 | 0.3681 | | 2.0513 | 30 | 2.737 | - | - | - | - | - | | 2.1197 | 31 | 3.1976 | - | - | - | - | - | | 2.1880 | 32 | 3.1363 | - | - | - | - | - | | 2.2564 | 33 | 2.9706 | - | - | - | - | - | | 2.3248 | 34 | 2.9629 | - | - | - | - | - | | 2.3932 | 35 | 2.7226 | - | - | - | - | - | | 2.4615 | 36 | 2.4378 | - | - | - | - | - | | 2.5299 | 37 | 2.7201 | - | - | - | - | - | | 2.5983 | 38 | 2.6802 | - | - | - | - | - | | 2.6667 | 39 | 3.1613 | - | - | - | - | - | | 2.7350 | 40 | 2.9344 | - | - | - | - | - | | 2.8034 | 41 | 2.5254 | - | - | - | - | - | | 2.8718 | 42 | 2.5617 | - | - | - | - | - | | 2.9402 | 43 | 2.459 | 0.3197 | 0.3571 | 0.3640 | 0.2739 | 0.3733 | | 3.0085 | 44 | 2.3785 | - | - | - | - | - | | 3.0769 | 45 | 1.9408 | - | - | - | - | - | | 3.1453 | 46 | 2.7095 | - | - | - | - | - | | 3.2137 | 47 | 2.4774 | - | - | - | - | - | | 3.2821 | 48 | 2.2178 | - | - | - | - | - | | 3.3504 | 49 | 2.0884 | - | - | - | - | - | | 3.4188 | 50 | 2.1044 | - | - | - | - | - | | 3.4872 | 51 | 2.1504 | - | - | - | - | - | | 3.5556 | 52 | 2.1177 | - | - | - | - | - | | 3.6239 | 53 | 2.2283 | - | - | - | - | - | | 3.6923 | 54 | 2.3964 | - | - | - | - | - | | 3.7607 | 55 | 2.0972 | - | - | - | - | - | | 3.8291 | 56 | 2.0961 | - | - | - | - | - | | 3.8974 | 57 | 1.783 | - | - | - | - | - | | **3.9658** | **58** | **2.1031** | **0.3246** | **0.3533** | **0.3603** | **0.2829** | **0.3687** | | 4.0342 | 59 | 1.6699 | - | - | - | - | - | | 4.1026 | 60 | 1.6675 | - | - | - | - | - | | 4.1709 | 61 | 2.1672 | - | - | - | - | - | | 4.2393 | 62 | 1.8881 | - | - | - | - | - | | 4.3077 | 63 | 1.701 | - | - | - | - | - | | 4.3761 | 64 | 1.9154 | - | - | - | - | - | | 4.4444 | 65 | 1.4549 | - | - | - | - | - | | 4.5128 | 66 | 1.5444 | - | - | - | - | - | | 4.5812 | 67 | 1.8352 | - | - | - | - | - | | 4.6496 | 68 | 1.7908 | - | - | - | - | - | | 4.7179 | 69 | 1.6876 | - | - | - | - | - | | 4.7863 | 70 | 1.7366 | - | - | - | - | - | | 4.8547 | 71 | 1.8689 | - | - | - | - | - | | 4.9231 | 72 | 1.4676 | - | - | - | - | - | | 4.9915 | 73 | 1.5045 | 0.3170 | 0.3538 | 0.3606 | 0.2829 | 0.3675 | | 5.0598 | 74 | 1.2155 | - | - | - | - | - | | 5.1282 | 75 | 1.4365 | - | - | - | - | - | | 5.1966 | 76 | 1.7451 | - | - | - | - | - | | 5.2650 | 77 | 1.4537 | - | - | - | - | - | | 5.3333 | 78 | 1.3813 | - | - | - | - | - | | 5.4017 | 79 | 1.4035 | - | - | - | - | - | | 5.4701 | 80 | 1.3912 | - | - | - | - | - | | 5.5385 | 81 | 1.3286 | - | - | - | - | - | | 5.6068 | 82 | 1.5153 | - | - | - | - | - | | 5.6752 | 83 | 1.6745 | - | - | - | - | - | | 5.7436 | 84 | 1.4323 | - | - | - | - | - | | 5.8120 | 85 | 1.5299 | - | - | - | - | - | | 5.8803 | 86 | 1.488 | - | - | - | - | - | | 5.9487 | 87 | 1.5195 | 0.3206 | 0.3556 | 0.3530 | 0.2878 | 0.3605 | | 6.0171 | 88 | 1.2999 | - | - | - | - | - | | 6.0855 | 89 | 1.1511 | - | - | - | - | - | | 6.1538 | 90 | 1.552 | - | - | - | - | - | | 6.2222 | 91 | 1.35 | - | - | - | - | - | | 6.2906 | 92 | 1.218 | - | - | - | - | - | | 6.3590 | 93 | 1.1712 | - | - | - | - | - | | 6.4274 | 94 | 1.3381 | - | - | - | - | - | | 6.4957 | 95 | 1.1716 | - | - | - | - | - | | 6.5641 | 96 | 1.2117 | - | - | - | - | - | | 6.6325 | 97 | 1.5349 | - | - | - | - | - | | 6.7009 | 98 | 1.4564 | - | - | - | - | - | | 6.7692 | 99 | 1.3541 | - | - | - | - | - | | 6.8376 | 100 | 1.2468 | - | - | - | - | - | | 6.9060 | 101 | 1.1519 | - | - | - | - | - | | 6.9744 | 102 | 1.2421 | 0.3150 | 0.3555 | 0.3501 | 0.2858 | 0.3575 | | 7.0427 | 103 | 1.0096 | - | - | - | - | - | | 7.1111 | 104 | 1.1405 | - | - | - | - | - | | 7.1795 | 105 | 1.2958 | - | - | - | - | - | | 7.2479 | 106 | 1.35 | - | - | - | - | - | | 7.3162 | 107 | 1.1291 | - | - | - | - | - | | 7.3846 | 108 | 0.9968 | - | - | - | - | - | | 7.4530 | 109 | 1.0454 | - | - | - | - | - | | 7.5214 | 110 | 1.102 | - | - | - | - | - | | 7.5897 | 111 | 1.1328 | - | - | - | - | - | | 7.6581 | 112 | 1.5988 | - | - | - | - | - | | 7.7265 | 113 | 1.2992 | - | - | - | - | - | | 7.7949 | 114 | 1.2572 | - | - | - | - | - | | 7.8632 | 115 | 1.1414 | - | - | - | - | - | | 7.9316 | 116 | 1.1432 | - | - | - | - | - | | 8.0 | 117 | 1.1181 | 0.3154 | 0.3545 | 0.3509 | 0.2884 | 0.3578 | | 8.0684 | 118 | 0.9365 | - | - | - | - | - | | 8.1368 | 119 | 1.3286 | - | - | - | - | - | | 8.2051 | 120 | 1.3711 | - | - | - | - | - | | 8.2735 | 121 | 1.2001 | - | - | - | - | - | | 8.3419 | 122 | 1.165 | - | - | - | - | - | | 8.4103 | 123 | 1.0575 | - | - | - | - | - | | 8.4786 | 124 | 1.105 | - | - | - | - | - | | 8.5470 | 125 | 1.077 | - | - | - | - | - | | 8.6154 | 126 | 1.2217 | - | - | - | - | - | | 8.6838 | 127 | 1.3254 | - | - | - | - | - | | 8.7521 | 128 | 1.2165 | - | - | - | - | - | | 8.8205 | 129 | 1.3021 | - | - | - | - | - | | 8.8889 | 130 | 1.0927 | - | - | - | - | - | | 8.9573 | 131 | 1.3961 | 0.3150 | 0.3540 | 0.3490 | 0.2882 | 0.3588 | | 9.0256 | 132 | 1.0779 | - | - | - | - | - | | 9.0940 | 133 | 0.901 | - | - | - | - | - | | 9.1624 | 134 | 1.313 | - | - | - | - | - | | 9.2308 | 135 | 1.1409 | - | - | - | - | - | | 9.2991 | 136 | 1.1635 | - | - | - | - | - | | 9.3675 | 137 | 1.0244 | - | - | - | - | - | | 9.4359 | 138 | 1.0576 | - | - | - | - | - | | 9.5043 | 139 | 1.0101 | - | - | - | - | - | | 9.5726 | 140 | 1.1516 | 0.3152 | 0.3561 | 0.3485 | 0.2877 | 0.3574 | * The bold row denotes the saved checkpoint.
### Framework Versions - Python: 3.12.2 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.3.1 - Accelerate: 0.27.2 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```