|
import os |
|
import sys |
|
sys.path.append(os.path.split(sys.path[0])[0]) |
|
|
|
from .unet import UNet3DConditionModel |
|
from torch.optim.lr_scheduler import LambdaLR |
|
|
|
def customized_lr_scheduler(optimizer, warmup_steps=5000): |
|
from torch.optim.lr_scheduler import LambdaLR |
|
def fn(step): |
|
if warmup_steps > 0: |
|
return min(step / warmup_steps, 1) |
|
else: |
|
return 1 |
|
return LambdaLR(optimizer, fn) |
|
|
|
|
|
def get_lr_scheduler(optimizer, name, **kwargs): |
|
if name == 'warmup': |
|
return customized_lr_scheduler(optimizer, **kwargs) |
|
elif name == 'cosine': |
|
from torch.optim.lr_scheduler import CosineAnnealingLR |
|
return CosineAnnealingLR(optimizer, **kwargs) |
|
else: |
|
raise NotImplementedError(name) |
|
|
|
def get_models(args): |
|
|
|
if 'TAV' in args.model: |
|
pretrained_model_path = args.pretrained_model_path |
|
return UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", use_concat=args.use_mask) |
|
else: |
|
raise '{} Model Not Supported!'.format(args.model) |
|
|