|
|
|
|
|
|
|
|
|
|
|
import torch as th |
|
import numpy as np |
|
|
|
|
|
def normal_kl(mean1, logvar1, mean2, logvar2): |
|
""" |
|
Compute the KL divergence between two gaussians. |
|
Shapes are automatically broadcasted, so batches can be compared to |
|
scalars, among other use cases. |
|
""" |
|
tensor = None |
|
for obj in (mean1, logvar1, mean2, logvar2): |
|
if isinstance(obj, th.Tensor): |
|
tensor = obj |
|
break |
|
assert tensor is not None, "at least one argument must be a Tensor" |
|
|
|
|
|
|
|
logvar1, logvar2 = [ |
|
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) |
|
for x in (logvar1, logvar2) |
|
] |
|
|
|
return 0.5 * ( |
|
-1.0 |
|
+ logvar2 |
|
- logvar1 |
|
+ th.exp(logvar1 - logvar2) |
|
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2) |
|
) |
|
|
|
|
|
def approx_standard_normal_cdf(x): |
|
""" |
|
A fast approximation of the cumulative distribution function of the |
|
standard normal. |
|
""" |
|
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) |
|
|
|
|
|
def continuous_gaussian_log_likelihood(x, *, means, log_scales): |
|
""" |
|
Compute the log-likelihood of a continuous Gaussian distribution. |
|
:param x: the targets |
|
:param means: the Gaussian mean Tensor. |
|
:param log_scales: the Gaussian log stddev Tensor. |
|
:return: a tensor like x of log probabilities (in nats). |
|
""" |
|
centered_x = x - means |
|
inv_stdv = th.exp(-log_scales) |
|
normalized_x = centered_x * inv_stdv |
|
log_probs = th.distributions.Normal(th.zeros_like(x), th.ones_like(x)).log_prob(normalized_x) |
|
return log_probs |
|
|
|
|
|
def discretized_gaussian_log_likelihood(x, *, means, log_scales): |
|
""" |
|
Compute the log-likelihood of a Gaussian distribution discretizing to a |
|
given image. |
|
:param x: the target images. It is assumed that this was uint8 values, |
|
rescaled to the range [-1, 1]. |
|
:param means: the Gaussian mean Tensor. |
|
:param log_scales: the Gaussian log stddev Tensor. |
|
:return: a tensor like x of log probabilities (in nats). |
|
""" |
|
assert x.shape == means.shape == log_scales.shape |
|
centered_x = x - means |
|
inv_stdv = th.exp(-log_scales) |
|
plus_in = inv_stdv * (centered_x + 1.0 / 255.0) |
|
cdf_plus = approx_standard_normal_cdf(plus_in) |
|
min_in = inv_stdv * (centered_x - 1.0 / 255.0) |
|
cdf_min = approx_standard_normal_cdf(min_in) |
|
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) |
|
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) |
|
cdf_delta = cdf_plus - cdf_min |
|
log_probs = th.where( |
|
x < -0.999, |
|
log_cdf_plus, |
|
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), |
|
) |
|
assert log_probs.shape == x.shape |
|
return log_probs |
|
|