updates model
Browse files- README.md +16 -25
- config.json +1 -1
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -25,10 +25,10 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
-
value:
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
-
value:
|
32 |
---
|
33 |
|
34 |
# Wav2Vec2-Large-XLSR-53-Swedish
|
@@ -85,11 +85,11 @@ from datasets import load_dataset, load_metric
|
|
85 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
86 |
import re
|
87 |
|
88 |
-
test_dataset = load_dataset("common_voice", "sv-SE", split="test")
|
89 |
wer = load_metric("wer")
|
90 |
|
91 |
-
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish")
|
92 |
-
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish")
|
93 |
model.to("cuda")
|
94 |
|
95 |
chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data
|
@@ -100,36 +100,24 @@ resampler = {
|
|
100 |
32000: torchaudio.transforms.Resample(32000, 16_000)
|
101 |
}
|
102 |
|
103 |
-
|
104 |
# Preprocessing the datasets.
|
105 |
# We need to read the aduio files as arrays
|
106 |
def speech_file_to_array_fn(batch):
|
107 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
|
|
|
|
108 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
109 |
batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
|
110 |
return batch
|
111 |
|
112 |
-
|
113 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
114 |
-
|
115 |
-
# Preprocessing the datasets.
|
116 |
-
# We need to read the aduio files as arrays
|
117 |
-
def speech_file_to_array_fn(batch):
|
118 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
119 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
120 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
121 |
-
return batch
|
122 |
-
|
123 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
124 |
|
125 |
# Preprocessing the datasets.
|
126 |
# We need to read the aduio files as arrays
|
127 |
def evaluate(batch):
|
128 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
129 |
-
|
130 |
with torch.no_grad():
|
131 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
132 |
-
|
133 |
pred_ids = torch.argmax(logits, dim=-1)
|
134 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
135 |
return batch
|
@@ -141,16 +129,19 @@ print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) f
|
|
141 |
|
142 |
```
|
143 |
|
144 |
-
**Test Result**:
|
145 |
|
146 |
|
147 |
## Training
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
a big chunk of the dataset was filtered out based on this mask
|
153 |
|
154 |
```python
|
155 |
mask = [(5 < len(x.split()) < 20) and np.average([len(entry) for entry in x.split()]) > 5 for x in dataset['transcript'].tolist()]
|
156 |
-
```
|
|
|
|
|
|
|
|
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
+
value: 20.220256
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
+
value: 6.924060
|
32 |
---
|
33 |
|
34 |
# Wav2Vec2-Large-XLSR-53-Swedish
|
|
|
85 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
86 |
import re
|
87 |
|
88 |
+
test_dataset = load_dataset("common_voice", "sv-SE", split="test")
|
89 |
wer = load_metric("wer")
|
90 |
|
91 |
+
processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish")
|
92 |
+
model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-swedish")
|
93 |
model.to("cuda")
|
94 |
|
95 |
chars_to_ignore_regex = "[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']" # TODO: adapt this list to include all special characters you removed from the data
|
|
|
100 |
32000: torchaudio.transforms.Resample(32000, 16_000)
|
101 |
}
|
102 |
|
|
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def speech_file_to_array_fn(batch):
|
106 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
107 |
+
for key, value in replacements.items():
|
108 |
+
batch["sentence"] = batch["sentence"].replace(key, value)
|
109 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
110 |
batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy()
|
111 |
return batch
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
114 |
|
115 |
# Preprocessing the datasets.
|
116 |
# We need to read the aduio files as arrays
|
117 |
def evaluate(batch):
|
118 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|
|
119 |
with torch.no_grad():
|
120 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
|
|
121 |
pred_ids = torch.argmax(logits, dim=-1)
|
122 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
123 |
return batch
|
|
|
129 |
|
130 |
```
|
131 |
|
132 |
+
**Test Result**: 20.220256 %
|
133 |
|
134 |
|
135 |
## Training
|
136 |
|
137 |
+
As first step used Common Voice train dataset and parts from NST
|
138 |
+
as can be found [here](https://github.com/se-asr/nst/tree/master).
|
139 |
+
Part of NST where removed using this mask
|
|
|
140 |
|
141 |
```python
|
142 |
mask = [(5 < len(x.split()) < 20) and np.average([len(entry) for entry in x.split()]) > 5 for x in dataset['transcript'].tolist()]
|
143 |
+
```
|
144 |
+
|
145 |
+
After training like this for 20000 steps the model was finetuned on the training and validation sets of Common Voice
|
146 |
+
only for 3500 steps more.
|
147 |
+
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation_dropout": 0.07,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/speech-data-1/dev/hugging_face_finetuning_week/sw_demo/checkpoints/2020_24_3_v24/checkpoint-19600",
|
3 |
"activation_dropout": 0.07,
|
4 |
"apply_spec_augment": true,
|
5 |
"architectures": [
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262065047
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b7be02b3d56d35d6bbdff2e511de5f2b3d44e66874958aca5617d0e594a3e20
|
3 |
size 1262065047
|