updates model
Browse files- README.md +5 -4
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -25,10 +25,10 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
-
value: 15.
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
-
value: 5.
|
32 |
---
|
33 |
|
34 |
# Wav2Vec2-Large-XLSR-53-Swedish
|
@@ -127,8 +127,9 @@ print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) f
|
|
127 |
|
128 |
```
|
129 |
|
130 |
-
**Test Result**: 15.
|
131 |
|
|
|
132 |
|
133 |
As first step used Common Voice train dataset and parts from NST
|
134 |
as can be found [here](https://github.com/se-asr/nst/tree/master).
|
@@ -144,4 +145,4 @@ After training like this for 20000 steps the model was finetuned on all of nst d
|
|
144 |
mask = [(1 < len(x.split()) < 25) and np.average([len(entry) for entry in x.split()]) > 3 for x in dataset['transcript'].tolist()]
|
145 |
```
|
146 |
|
147 |
-
and all of common voice for
|
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
+
value: 15.156165
|
29 |
- name: Test CER
|
30 |
type: cer
|
31 |
+
value: 5.343999
|
32 |
---
|
33 |
|
34 |
# Wav2Vec2-Large-XLSR-53-Swedish
|
|
|
127 |
|
128 |
```
|
129 |
|
130 |
+
**Test Result**: 15.156165 %
|
131 |
|
132 |
+
## Training
|
133 |
|
134 |
As first step used Common Voice train dataset and parts from NST
|
135 |
as can be found [here](https://github.com/se-asr/nst/tree/master).
|
|
|
145 |
mask = [(1 < len(x.split()) < 25) and np.average([len(entry) for entry in x.split()]) > 3 for x in dataset['transcript'].tolist()]
|
146 |
```
|
147 |
|
148 |
+
and all of common voice for 100000 more steps approximately 16 epochs.
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1262065047
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3c27ed20a605dc14d8ff2bccb168d08d947d19902b9fe56871eb89071d5418d
|
3 |
size 1262065047
|