--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7866666666666666 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2095 - Accuracy: 0.7867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0746 | 1.0 | 107 | 1.9697 | 0.46 | | 1.5843 | 2.0 | 214 | 1.5908 | 0.5067 | | 1.5982 | 3.0 | 321 | 1.4385 | 0.58 | | 1.2855 | 4.0 | 428 | 1.3906 | 0.5467 | | 1.0562 | 5.0 | 535 | 1.0173 | 0.7 | | 0.8919 | 6.0 | 642 | 0.9564 | 0.6733 | | 0.7214 | 7.0 | 749 | 0.8906 | 0.7467 | | 0.7624 | 8.0 | 856 | 0.9580 | 0.7467 | | 0.3619 | 9.0 | 963 | 1.0685 | 0.7733 | | 0.3814 | 10.0 | 1070 | 1.1847 | 0.7467 | | 0.4371 | 11.0 | 1177 | 0.9630 | 0.7867 | | 0.3186 | 12.0 | 1284 | 0.9635 | 0.82 | | 0.1474 | 13.0 | 1391 | 1.0021 | 0.8333 | | 0.0918 | 14.0 | 1498 | 1.4497 | 0.7533 | | 0.0592 | 15.0 | 1605 | 1.2592 | 0.7733 | | 0.0084 | 16.0 | 1712 | 1.2656 | 0.7867 | | 0.0216 | 17.0 | 1819 | 1.2095 | 0.7867 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0