File size: 8,625 Bytes
77a13e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-es-es
tags:
- generated_from_trainer
model-index:
- name: '5661'
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 5661

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-es](https://huggingface.co./Helsinki-NLP/opus-mt-es-es) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5476
- Model Preparation Time: 0.0034
- Bleu Msl: 0.0
- Bleu 1 Msl: 0.6746
- Bleu 2 Msl: 0.0151
- Bleu 3 Msl: 0.0045
- Bleu 4 Msl: 0.0023
- Ter Msl: 100
- Bleu Asl: 0
- Bleu 1 Asl: 0
- Bleu 2 Asl: 0
- Bleu 3 Asl: 0
- Bleu 4 Asl: 0
- Ter Asl: 100

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Bleu Msl | Bleu 1 Msl | Bleu 2 Msl | Bleu 3 Msl | Bleu 4 Msl | Ter Msl | Bleu Asl | Bleu 1 Asl | Bleu 2 Asl | Bleu 3 Asl | Bleu 4 Asl | Ter Asl |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|:----------:|:----------:|:----------:|:----------:|:-------:|:--------:|:----------:|:----------:|:----------:|:----------:|:-------:|
| No log        | 1.0   | 142  | 0.3764          | 0.0034                 | 35.3553  | 0.5627     | 0.0104     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4152     | 0.0083     | 0.0024     | 0.0012     | 100     |
| No log        | 2.0   | 284  | 0.3592          | 0.0034                 | 37.9918  | 0.5665     | 0.0104     | 0.0029     | 0.0014     | 100     | 53.7285  | 0.3970     | 0.0081     | 0.0024     | 0.0012     | 100     |
| No log        | 3.0   | 426  | 0.3690          | 0.0034                 | 50.0000  | 0.5627     | 0.0104     | 0.0029     | 0.0014     | 100     | 32.1729  | 0.3427     | 0.0075     | 0.0022     | 0.0011     | 100     |
| 0.019         | 4.0   | 568  | 0.3660          | 0.0034                 | 50.0000  | 0.5875     | 0.0106     | 0.0029     | 0.0014     | 100     | 37.9918  | 0.4135     | 0.0083     | 0.0024     | 0.0012     | 100     |
| 0.019         | 5.0   | 710  | 0.3824          | 0.0034                 | 50.0000  | 0.6350     | 0.0110     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.4465     | 0.0086     | 0.0024     | 0.0012     | 100     |
| 0.019         | 6.0   | 852  | 0.3574          | 0.0034                 | 50.0000  | 0.5019     | 0.0098     | 0.0028     | 0.0014     | 100     | 42.7287  | 0.4217     | 0.0083     | 0.0024     | 0.0012     | 100     |
| 0.019         | 7.0   | 994  | 0.3810          | 0.0034                 | 0.0      | 0.5361     | 0.0101     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4300     | 0.0084     | 0.0024     | 0.0012     | 100     |
| 0.0188        | 8.0   | 1136 | 0.3659          | 0.0034                 | 50.0000  | 0.5        | 0.0098     | 0.0028     | 0.0014     | 100     | 100.0000 | 0.3904     | 0.0080     | 0.0023     | 0.0012     | 100     |
| 0.0188        | 9.0   | 1278 | 0.3696          | 0.0034                 | 50.0000  | 0.6236     | 0.0109     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.4778     | 0.0089     | 0.0025     | 0.0012     | 100     |
| 0.0188        | 10.0  | 1420 | 0.3749          | 0.0034                 | 50.0000  | 0.5970     | 0.0107     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.4498     | 0.0086     | 0.0025     | 0.0012     | 100     |
| 0.0107        | 11.0  | 1562 | 0.3746          | 0.0034                 | 50.0000  | 0.5228     | 0.0100     | 0.0028     | 0.0014     | 100     | 70.7107  | 0.4349     | 0.0085     | 0.0024     | 0.0012     | 100     |
| 0.0107        | 12.0  | 1704 | 0.3635          | 0.0034                 | 50.0000  | 0.5627     | 0.0104     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4728     | 0.0088     | 0.0025     | 0.0012     | 100     |
| 0.0107        | 13.0  | 1846 | 0.3629          | 0.0034                 | 50.0000  | 0.5856     | 0.0106     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4481     | 0.0086     | 0.0024     | 0.0012     | 100     |
| 0.0107        | 14.0  | 1988 | 0.3697          | 0.0034                 | 50.0000  | 0.5760     | 0.0105     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4778     | 0.0089     | 0.0025     | 0.0012     | 100     |
| 0.0096        | 15.0  | 2130 | 0.3630          | 0.0034                 | 50.0000  | 0.5570     | 0.0103     | 0.0029     | 0.0014     | 100     | 59.4604  | 0.4514     | 0.0086     | 0.0025     | 0.0012     | 100     |
| 0.0096        | 16.0  | 2272 | 0.3608          | 0.0034                 | 50.0000  | 0.5304     | 0.0101     | 0.0028     | 0.0014     | 100     | 100.0000 | 0.4481     | 0.0086     | 0.0024     | 0.0012     | 100     |
| 0.0096        | 17.0  | 2414 | 0.3612          | 0.0034                 | 50.0000  | 0.5646     | 0.0104     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4415     | 0.0085     | 0.0024     | 0.0012     | 100     |
| 0.0057        | 18.0  | 2556 | 0.3571          | 0.0034                 | 50.0000  | 0.5646     | 0.0104     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4415     | 0.0085     | 0.0024     | 0.0012     | 100     |
| 0.0057        | 19.0  | 2698 | 0.3655          | 0.0034                 | 50.0000  | 0.5817     | 0.0105     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4514     | 0.0086     | 0.0025     | 0.0012     | 100     |
| 0.0057        | 20.0  | 2840 | 0.3682          | 0.0034                 | 50.0000  | 0.5760     | 0.0105     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4580     | 0.0087     | 0.0025     | 0.0012     | 100     |
| 0.0057        | 21.0  | 2982 | 0.3683          | 0.0034                 | 50.0000  | 0.5722     | 0.0104     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4646     | 0.0088     | 0.0025     | 0.0012     | 100     |
| 0.0046        | 22.0  | 3124 | 0.3745          | 0.0034                 | 50.0000  | 0.5798     | 0.0105     | 0.0029     | 0.0014     | 100     | 100.0000 | 0.4695     | 0.0088     | 0.0025     | 0.0012     | 100     |
| 0.0046        | 23.0  | 3266 | 0.3680          | 0.0034                 | 50.0000  | 0.6198     | 0.0109     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.4811     | 0.0089     | 0.0025     | 0.0012     | 100     |
| 0.0046        | 24.0  | 3408 | 0.3702          | 0.0034                 | 50.0000  | 0.5951     | 0.0106     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.4811     | 0.0089     | 0.0025     | 0.0012     | 100     |
| 0.0039        | 25.0  | 3550 | 0.3701          | 0.0034                 | 50.0000  | 0.5951     | 0.0106     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.4959     | 0.0090     | 0.0025     | 0.0012     | 100     |
| 0.0039        | 26.0  | 3692 | 0.3689          | 0.0034                 | 50.0000  | 0.6065     | 0.0107     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.5041     | 0.0091     | 0.0025     | 0.0012     | 100     |
| 0.0039        | 27.0  | 3834 | 0.3681          | 0.0034                 | 50.0000  | 0.6084     | 0.0108     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.5008     | 0.0091     | 0.0025     | 0.0012     | 100     |
| 0.0039        | 28.0  | 3976 | 0.3684          | 0.0034                 | 50.0000  | 0.6217     | 0.0109     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.5025     | 0.0091     | 0.0025     | 0.0012     | 100     |
| 0.0033        | 29.0  | 4118 | 0.3702          | 0.0034                 | 50.0000  | 0.6122     | 0.0108     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.5008     | 0.0091     | 0.0025     | 0.0012     | 100     |
| 0.0033        | 30.0  | 4260 | 0.3700          | 0.0034                 | 50.0000  | 0.6160     | 0.0108     | 0.0030     | 0.0014     | 100     | 100.0000 | 0.5008     | 0.0091     | 0.0025     | 0.0012     | 100     |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0