--- license: other tags: - generated_from_trainer model-index: - name: distilroberta-topic-classification results: [] datasets: - valurank/Topic_Classification language: - en metrics: - f1 --- # distilroberta-topic-classification This model is a fine-tuned version of [distilroberta-topic-base](https://huggingface.co./distilroberta-base) on a dataset of headlines. It achieves the following results on the evaluation set: - Loss: 2.235735 - F1: 0.756 ## Training and evaluation data The following data sources were used: * 22k News articles classified into 120 different topics from [Hugging face](https://huggingface.co./datasets/valurank/Topic_Classification) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3851 | 1.0 | 561 | 2.3445 | 0.6495 | | 2.1441 | 2.0 | 1122 | 2.1980 | 0.7019 | | 1.9992 | 3.0 | 1683 | 2.1720 | 0.7189 | | 1.8384 | 4.0 | 2244 | 2.1425 | 0.7403 | | 1.7468 | 5.0 | 2805 | 2.1666 | 0.7453 | | 1.6360 | 6.0 | 3366 | 2.1779 | 0.7456 | | 1.5935 | 7.0 | 3927 | 2.2003 | 0.7555 | | 1.5460 | 8.0 | 4488 | 2.2157 | 0.7575 | | 1.5510 | 9.0 | 5049 | 2.2300 | 0.7536 | | 1.5097 | 10.0 | 5610 | 2.2357 | 0.7547 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0