File size: 3,453 Bytes
9418fc8
 
 
 
 
 
 
 
9078482
9418fc8
15f4a19
 
 
 
 
 
8a12658
126be80
 
 
6e7708d
07e1f4f
8a12658
07e1f4f
8b7a6dc
07e1f4f
9418fc8
 
 
 
 
 
7e918b2
9418fc8
 
 
 
4665775
 
 
 
 
 
 
 
 
9418fc8
 
 
 
 
 
e7ac0f7
4665775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7ac0f7
4665775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7ac0f7
9418fc8
 
 
 
 
 
 
 
decbab1
9418fc8
 
 
 
 
 
 
9078482
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
base_model:
- v000000/MN-12B-Part1
- v000000/MN-12B-Part2
library_name: transformers
tags:
- mergekit
- merge
- mistral
---

Mistral-Nemo-12B-Estrella-v1
---------------------------------------------------------------------

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/nGi9VcdMMmRVbykIUJn2P.png)

Untested!

<b>Mistral Instruct / ChatML format.</b>

# <b>Quants</b>
* [Q6_K-GGUF](https://huggingface.co./v000000/MN-12B-Estrella-v1-Q6_K-GGUF)


----------------------------------------------------------------------
## merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged with a multi-step method using the <b>DELLA</b>, <b>DELLA_LINEAR</b> and <b>SLERP</b> merge algorithms.

### Models Merged

The following models were included in the merge:
* [nothingiisreal/MN-12B-Celeste-V1.9](https://huggingface.co./nothingiisreal/MN-12B-Celeste-V1.9)
* [shuttleai/shuttle-2.5-mini](https://huggingface.co./shuttleai/shuttle-2.5-mini)
* [anthracite-org/magnum-12b-v2](https://huggingface.co./anthracite-org/magnum-12b-v2)
* [Sao10K/MN-12B-Lyra-v1](https://huggingface.co./Sao10K/MN-12B-Lyra-v1)
* [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co./unsloth/Mistral-Nemo-Instruct-2407)
* [NeverSleep/Lumimaid-v0.2-12B](https://huggingface.co./NeverSleep/Lumimaid-v0.2-12B)
* [UsernameJustAnother/Nemo-12B-Marlin-v5](https://huggingface.co./UsernameJustAnother/Nemo-12B-Marlin-v5)
* [BeaverAI/mistral-doryV2-12b](https://huggingface.co./BeaverAI/mistral-doryV2-12b)
* [invisietch/Atlantis-v0.1-12B](https://huggingface.co./invisietch/Atlantis-v0.1-12B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
#Step 1 (Part1)
models:
  - model: Sao10K/MN-12B-Lyra-v1
    parameters:
      weight: 0.15
      density: 0.77
  - model: shuttleai/shuttle-2.5-mini
    parameters:
      weight: 0.20
      density: 0.78
  - model: anthracite-org/magnum-12b-v2
    parameters:
      weight: 0.35
      density: 0.85
  - model: nothingiisreal/MN-12B-Celeste-V1.9
    parameters:
      weight: 0.55
      density: 0.90
merge_method: della
base_model: Sao10K/MN-12B-Lyra-v1
parameters:
  int8_mask: true
  epsilon: 0.05
  lambda: 1
dtype: bfloat16
#Step 2 (Part2)
models:
  - model: BeaverAI/mistral-doryV2-12b
    parameters:
      weight: 0.10
      density: 0.4
  - model: unsloth/Mistral-Nemo-Instruct-2407
    parameters:
      weight: 0.20
      density: 0.4
  - model: UsernameJustAnother/Nemo-12B-Marlin-v5
    parameters:
      weight: 0.25
      density: 0.5
  - model: invisietch/Atlantis-v0.1-12B
    parameters:
      weight: 0.3
      density: 0.5
  - model: NeverSleep/Lumimaid-v0.2-12B
    parameters:
      weight: 0.4
      density: 0.8
merge_method: della_linear
base_model: anthracite-org/magnum-12b-v2
parameters:
  int8_mask: true
  epsilon: 0.05
  lambda: 1
dtype: bfloat16
#Step 3 (Estrella)
slices:
  - sources:
      - model: v000000/MN-12B-Part2
        layer_range: [0, 40]
      - model: v000000/MN-12B-Part1
        layer_range: [0, 40]
merge_method: slerp
base_model: v000000/MN-12B-Part1
parameters: #smooth gradient prio part1
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 0.6, 0.1, 0.6, 0.3, 0.8, 0.5]
    - filter: mlp
      value: [0, 0.5, 0.4, 0.3, 0, 0.3, 0.4, 0.7, 0.2, 0.5]
    - value: 0.5
dtype: bfloat16
```