--- base_model: - v000000/Llama-3.1-8B-Stheno-v3.4-abliterated - akjindal53244/Llama-3.1-Storm-8B - Sao10K/Llama-3.1-8B-Stheno-v3.4 library_name: transformers tags: - mergekit - merge - llama --- # Llama-3.1-Sthenorm-8B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/Mn0qFPGZuOJc7qjACIsO6.png) RP model, Stheno3.4 with one of the smartest 3.1 models, half abliterated. # Thanks mradermacher for the quants: * [GGUF](https://huggingface.co./mradermacher/L3.1-Sthenorm-8B-GGUF) * [GGUF imatrix](https://huggingface.co./mradermacher/L3.1-Sthenorm-8B-i1-GGUF) ## merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [v000000/Llama-3.1-8B-Stheno-v3.4-abliterated](https://huggingface.co./v000000/Llama-3.1-8B-Stheno-v3.4-abliterated) * [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co./akjindal53244/Llama-3.1-Storm-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: v000000/Llama-3.1-8B-Stheno-v3.4-abliterated layer_range: [0, 32] - model: akjindal53244/Llama-3.1-Storm-8B layer_range: [0, 32] merge_method: slerp base_model: v000000/Llama-3.1-8B-Stheno-v3.4-abliterated parameters: t: - filter: self_attn value: [0.1, 0.6, 0.3, 0.8, 0.5] - filter: mlp value: [0.9, 0.4, 0.7, 0.2, 0.5] - value: 0.5 dtype: float32 ``` # Prompt Template: ```bash <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ```