--- language: - ru - zh - en tags: - translation license: apache-2.0 datasets: - ccmatrix metrics: - sacrebleu widget: - example_title: translate zh-ru text: > translate to ru: 开发的目的是为用户提供个人同步翻译。 - example_title: translate ru-en text: > translate to en: Цель разработки — предоставить пользователям личного синхронного переводчика. - example_title: translate en-ru text: > translate to ru: The purpose of the development is to provide users with a personal synchronized interpreter. - example_title: translate en-zh text: > translate to zh: The purpose of the development is to provide users with a personal synchronized interpreter. - example_title: translate zh-en text: > translate to en: 开发的目的是为用户提供个人同步解释器。 - example_title: translate ru-zh text: > translate to zh: Цель разработки — предоставить пользователям личного синхронного переводчика. --- # T5 English, Russian and Chinese multilingual machine translation This model represents a conventional T5 transformer in multitasking mode for translation into the required language, precisely configured for machine translation for pairs: ru-zh, zh-ru, en-zh, zh-en, en-ru, ru-en. The model can perform direct translation between any pair of Russian, Chinese or English languages. For translation into the target language, the target language identifier is specified as a prefix 'translate to :'. In this case, the source language may not be specified, in addition, the source text may be multilingual. Example translate Russian to Chinese ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024' model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) prefix = 'translate to zh: ' src_text = prefix + "Съешь ещё этих мягких французских булок." # translate Russian to Chinese input_ids = tokenizer(src_text, return_tensors="pt") generated_tokens = model.generate(**input_ids) result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) print(result) # 再吃这些法国的甜蜜的面包。 ``` and Example translate Chinese to Russian ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model_name = 'utrobinmv/t5_translate_en_ru_zh_large_1024' model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) prefix = 'translate to ru: ' src_text = prefix + "再吃这些法国的甜蜜的面包。" # translate Russian to Chinese input_ids = tokenizer(src_text, return_tensors="pt") generated_tokens = model.generate(**input_ids) result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) print(result) # Съешьте этот сладкий хлеб из Франции. ``` ## ## Languages covered Russian (ru_RU), Chinese (zh_CN), English (en_US)