{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x12e20fcc0>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "num_timesteps": 6946816, "_total_timesteps": 6915744, "_num_timesteps_at_start": 6815744, "seed": null, "action_noise": null, "start_time": 1651695518.7732532, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004492936696326444, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVKhuLj7xcUCUhpRSlIwBbJRLuowBdJRHQI/tvfj0cwR1fZQoaAZoCWgPQwi1+uqqgKxxQJSGlFKUaBVLhmgWR0CP7cfYBeXzdX2UKGgGaAloD0MIEJVGzGw3cECUhpRSlGgVS5BoFkdAj+3s+eOGTXV9lChoBmgJaA9DCKQzMPKyV3NAlIaUUpRoFUu1aBZHQI/uQT238XN1fZQoaAZoCWgPQwhfDOVE+79wQJSGlFKUaBVLoWgWR0CP7wH9m6GydX2UKGgGaAloD0MIOPdXj3vsb0CUhpRSlGgVS4NoFkdAj+8cIJJGv3V9lChoBmgJaA9DCBQ/xtw183FAlIaUUpRoFUuGaBZHQI/vioS+QEJ1fZQoaAZoCWgPQwg3GVWGMQNxQJSGlFKUaBVLoWgWR0CP74sUZeiSdX2UKGgGaAloD0MIfGXequsecUCUhpRSlGgVS6xoFkdAj++Rzq8lHHV9lChoBmgJaA9DCM064/viVHFAlIaUUpRoFUuKaBZHQI/wB62OQyR1fZQoaAZoCWgPQwiFJ/T6k+RyQJSGlFKUaBVLq2gWR0CP8BqiXY16dX2UKGgGaAloD0MI/rrTned/cUCUhpRSlGgVS5loFkdAj/A6XKKYRnV9lChoBmgJaA9DCEbsE0AxZnBAlIaUUpRoFUuWaBZHQI/we0VrRBx1fZQoaAZoCWgPQwimRBK9TOBxQJSGlFKUaBVLkGgWR0CP8IyTINmUdX2UKGgGaAloD0MIuOf500bZcECUhpRSlGgVS45oFkdAj/DTIFNcnnV9lChoBmgJaA9DCIgq/Ble1HBAlIaUUpRoFUuNaBZHQI/w2YF7laN1fZQoaAZoCWgPQwhXXYdqSoFzQJSGlFKUaBVLtWgWR0CP8PLeyiVTdX2UKGgGaAloD0MI0a3X9CBscECUhpRSlGgVS6BoFkdAj/F3QUpNK3V9lChoBmgJaA9DCPPLYIyIp3JAlIaUUpRoFUugaBZHQI/x2Yv38Gd1fZQoaAZoCWgPQwgdIQN5ttRxQJSGlFKUaBVLu2gWR0CP8ewztTkydX2UKGgGaAloD0MI+mGE8OjdbkCUhpRSlGgVS5VoFkdAj/MBu4wyqXV9lChoBmgJaA9DCP+Xa9GCLHJAlIaUUpRoFUudaBZHQI/zQa99MK11fZQoaAZoCWgPQwhb6bXZmH1zQJSGlFKUaBVLvGgWR0CP85rsSkCWdX2UKGgGaAloD0MI6+Oh7+4XckCUhpRSlGgVS5RoFkdAj/Q6dMCcPXV9lChoBmgJaA9DCOVC5V8LbHFAlIaUUpRoFUuZaBZHQI/0SpPykKx1fZQoaAZoCWgPQwjpgY/BivZzQJSGlFKUaBVLxWgWR0CP9FkJ8fFKdX2UKGgGaAloD0MI9RQ5RBxEcUCUhpRSlGgVS6loFkdAj/RnVf/m1nV9lChoBmgJaA9DCPX3UnjQP3JAlIaUUpRoFUuyaBZHQI/0aAQQL/l1fZQoaAZoCWgPQwhdbFophLZyQJSGlFKUaBVLvWgWR0CP9Lvd/J/5dX2UKGgGaAloD0MIa4DSUOOqckCUhpRSlGgVS/BoFkdAj/TXpnpSrHV9lChoBmgJaA9DCMuBHmobvnFAlIaUUpRoFUueaBZHQI/07FVDKHR1fZQoaAZoCWgPQwhfCaTE7sZzQJSGlFKUaBVLqmgWR0CP9QuEEkjYdX2UKGgGaAloD0MIlxqhn2nZckCUhpRSlGgVS41oFkdAj/URmTTvzHV9lChoBmgJaA9DCPrQBfUt8XJAlIaUUpRoFUuxaBZHQI/1MGVzIWB1fZQoaAZoCWgPQwgGSgoswDByQJSGlFKUaBVLkGgWR0CP9WTzundgdX2UKGgGaAloD0MImPxP/i4mc0CUhpRSlGgVS6toFkdAj/X9C3PRiXV9lChoBmgJaA9DCJ62RgTjhnBAlIaUUpRoFUukaBZHQI/3BEORT0h1fZQoaAZoCWgPQwiqSfCGtM9uQJSGlFKUaBVLjWgWR0CP91DaXa8IdX2UKGgGaAloD0MI83aE00KpcUCUhpRSlGgVS7loFkdAj/dRf4REnnV9lChoBmgJaA9DCHPVPEfkE3FAlIaUUpRoFUudaBZHQI/3wY+B6KN1fZQoaAZoCWgPQwjYf52bdu5xQJSGlFKUaBVLmWgWR0CP98LCvX9SdX2UKGgGaAloD0MID3uhgO1wcECUhpRSlGgVS6BoFkdAj/fs3qAz6HV9lChoBmgJaA9DCCp0XmPXhXFAlIaUUpRoFUvCaBZHQI/4CnFYMfB1fZQoaAZoCWgPQwjDRlm/mbhvQJSGlFKUaBVLkWgWR0CP+Buy/sVtdX2UKGgGaAloD0MIpABRMCNzc0CUhpRSlGgVS7NoFkdAj/hLPdEb53V9lChoBmgJaA9DCOgWuhLBxHFAlIaUUpRoFUuoaBZHQI/4Zc/t6X11fZQoaAZoCWgPQwiZoIZv4QFzQJSGlFKUaBVLoGgWR0CP+LMB6rvLdX2UKGgGaAloD0MIl/+QfjtvckCUhpRSlGgVS6poFkdAj/i9L6DXe3V9lChoBmgJaA9DCCe+2lGcF3JAlIaUUpRoFUu1aBZHQI/4wskIHC51fZQoaAZoCWgPQwgSaRt/4mNxQJSGlFKUaBVLsGgWR0CP+T1tfoicdX2UKGgGaAloD0MIA3rhzkXCckCUhpRSlGgVS55oFkdAj/l9HDrJKnV9lChoBmgJaA9DCLCsNClFdnJAlIaUUpRoFUuUaBZHQI/6Rl4C6pZ1fZQoaAZoCWgPQwh7L75oj6txQJSGlFKUaBVLmmgWR0CP+r2oNutPdX2UKGgGaAloD0MIlx5N9eQ8cUCUhpRSlGgVS4JoFkdAj/rEtNBWxXV9lChoBmgJaA9DCNVd2QWDwm9AlIaUUpRoFUudaBZHQI/60cbR4Ql1fZQoaAZoCWgPQwhQHEC/75txQJSGlFKUaBVLm2gWR0CP+zqLS/j9dX2UKGgGaAloD0MIUDdQ4J0Pc0CUhpRSlGgVS41oFkdAj/t7xNIsiHV9lChoBmgJaA9DCKHWNO+4hHJAlIaUUpRoFUuLaBZHQI/7kQumJnB1fZQoaAZoCWgPQwgiUWhZd01yQJSGlFKUaBVLu2gWR0CP/Gnpjc2zdX2UKGgGaAloD0MIidS0i+nScUCUhpRSlGgVS7loFkdAj/xyHdoFmnV9lChoBmgJaA9DCJS+EHKevXFAlIaUUpRoFUulaBZHQI/8w/A0sOJ1fZQoaAZoCWgPQwi+Sj52lzxvQJSGlFKUaBVLj2gWR0CP/N+CK77LdX2UKGgGaAloD0MII6RuZx/KckCUhpRSlGgVS+hoFkdAj/1a/7BO6HV9lChoBmgJaA9DCIVE2sbfiHNAlIaUUpRoFUu9aBZHQI/9YtpVS4x1fZQoaAZoCWgPQwhYcD/gAYhwQJSGlFKUaBVLlWgWR0CP/WRTS9dvdX2UKGgGaAloD0MIx4FXyx1DdECUhpRSlGgVS8ZoFkdAj/2yzHCGe3V9lChoBmgJaA9DCB2Txf0HtXJAlIaUUpRoFUuCaBZHQI/9xk/bCaZ1fZQoaAZoCWgPQwgJT+j1p4ZwQJSGlFKUaBVLlGgWR0CP/tePaL4vdX2UKGgGaAloD0MInPwWnSwDcECUhpRSlGgVS6FoFkdAj/8k2Hck+3V9lChoBmgJaA9DCPrS259LuHJAlIaUUpRoFUuQaBZHQI//NFc6eXl1fZQoaAZoCWgPQwjSxaaVQr1xQJSGlFKUaBVLp2gWR0CP/1g/keZHdX2UKGgGaAloD0MITtTS3EpRcUCUhpRSlGgVS5toFkdAj//lPrOZ9nV9lChoBmgJaA9DCCi5wyayHXNAlIaUUpRoFUufaBZHQI//67sfJV91fZQoaAZoCWgPQwj0iqceqeNyQJSGlFKUaBVLjWgWR0CQAGoQFs55dX2UKGgGaAloD0MIejcWFIY5c0CUhpRSlGgVS5VoFkdAkAB7iIcin3V9lChoBmgJaA9DCGFsIciBVnFAlIaUUpRoFUuHaBZHQJAAm0AtFrl1fZQoaAZoCWgPQwiponiV9ctxQJSGlFKUaBVLq2gWR0CQAKeKKpDNdX2UKGgGaAloD0MI4UOJlvxNc0CUhpRSlGgVS7loFkdAkADXX2/SIHV9lChoBmgJaA9DCPXXKyw4hXJAlIaUUpRoFUuwaBZHQJABMURFqi51fZQoaAZoCWgPQwifIRyzbBlxQJSGlFKUaBVLomgWR0CQATU0elsQdX2UKGgGaAloD0MImUUotoKackCUhpRSlGgVS7toFkdAkAFUNvwVkHV9lChoBmgJaA9DCP4LBAFygnJAlIaUUpRoFUt+aBZHQJABYmShakh1fZQoaAZoCWgPQwio5JzYQ49zQJSGlFKUaBVLxGgWR0CQAaLAHmihdX2UKGgGaAloD0MI205bI8IbckCUhpRSlGgVS5xoFkdAkAHVz+3pfXV9lChoBmgJaA9DCOyFAraDbXJAlIaUUpRoFUu+aBZHQJACKfChvit1fZQoaAZoCWgPQwjfqBWmb3hyQJSGlFKUaBVLsGgWR0CQAjVGTcIrdX2UKGgGaAloD0MI7Q+U27bIcUCUhpRSlGgVS6doFkdAkAJcBIWgvnV9lChoBmgJaA9DCJIDdjU5F3NAlIaUUpRoFUusaBZHQJACa0lZ5iV1fZQoaAZoCWgPQwh5QNmUK8txQJSGlFKUaBVLimgWR0CQApG3F1jidX2UKGgGaAloD0MIjKGcaFeGcUCUhpRSlGgVS6RoFkdAkALSfcvdunV9lChoBmgJaA9DCJVHN8IixXJAlIaUUpRoFUuhaBZHQJAC7xx1gYx1fZQoaAZoCWgPQwhjQWFQ5udxQJSGlFKUaBVLgGgWR0CQAwEFnqVydX2UKGgGaAloD0MIL4oe+NjocUCUhpRSlGgVS6VoFkdAkAMpobn5i3V9lChoBmgJaA9DCNFBl3DoAHRAlIaUUpRoFUvEaBZHQJADM0sOG0x1fZQoaAZoCWgPQwiTGARWjuxxQJSGlFKUaBVLnGgWR0CQA1/axoqTdX2UKGgGaAloD0MIg94bQ0D4cUCUhpRSlGgVS6BoFkdAkAOJpi7TUnV9lChoBmgJaA9DCOxP4nMnSnNAlIaUUpRoFUu3aBZHQJAD53cHnlp1fZQoaAZoCWgPQwgKgPEMWrtwQJSGlFKUaBVLo2gWR0CQBBaVD8cddX2UKGgGaAloD0MIX9ODglLwbkCUhpRSlGgVS45oFkdAkAQk2kzoEHV9lChoBmgJaA9DCL1zKEPVWnJAlIaUUpRoFUvCaBZHQJAEVO+IuXh1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 2120, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": { ":type:": "", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjH0vVXNlcnMvdXRrdXNhZ2xhbS9EZXNrdG9wL3Byb2plY3RzL3JsMS9kZWVwLXJsLWNsYXNzL3VuaXQxL3ZlbnYvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMfS9Vc2Vycy91dGt1c2FnbGFtL0Rlc2t0b3AvcHJvamVjdHMvcmwxL2RlZXAtcmwtY2xhc3MvdW5pdDEvdmVudi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }