--- library_name: transformers language: - ja license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - automatic-speech-recognition - original_noisy_common_voice_and_kakeiken - generated_from_trainer metrics: - wer model-index: - name: Hubert-noisy-cv-kakeiken results: [] --- # Hubert-noisy-cv-kakeiken This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co./rinna/japanese-hubert-base) on the ORIGINAL_NOISY_COMMON_VOICE_AND_KAKEIKEN - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.9441 - Wer: 1.0 - Cer: 0.3276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:------:|:---------------:|:------:|:------:| | 0.3007 | 1.0 | 3463 | 0.9433 | 1.0 | 0.3277 | | 0.1409 | 2.0 | 6926 | 1.0068 | 1.0 | 0.3606 | | 0.1444 | 3.0 | 10389 | 1.0954 | 1.0 | 0.3839 | | 0.1518 | 4.0 | 13852 | 1.2021 | 1.0016 | 0.4125 | | 0.1691 | 5.0 | 17315 | 1.3227 | 1.0224 | 0.4465 | | 0.1612 | 6.0 | 20778 | 1.2268 | 1.0087 | 0.4165 | | 0.155 | 7.0 | 24241 | 1.3089 | 1.0160 | 0.4389 | | 0.1529 | 8.0 | 27704 | 1.2341 | 1.0017 | 0.4234 | | 0.1458 | 9.0 | 31167 | 1.2319 | 1.0095 | 0.4250 | | 0.1371 | 10.0 | 34630 | 1.1689 | 1.0041 | 0.4131 | | 0.1295 | 11.0 | 38093 | 1.2024 | 1.0278 | 0.4175 | | 0.1347 | 12.0 | 41556 | 1.2089 | 1.0142 | 0.4192 | | 0.1161 | 13.0 | 45019 | 1.1461 | 1.0371 | 0.3998 | | 0.1162 | 14.0 | 48482 | 1.1236 | 1.0311 | 0.3920 | | 0.1107 | 15.0 | 51945 | 1.0697 | 1.0276 | 0.3797 | | 0.1029 | 16.0 | 55408 | 1.0551 | 1.0108 | 0.3806 | | 0.0992 | 17.0 | 58871 | 1.0634 | 1.0187 | 0.3727 | | 0.0906 | 18.0 | 62334 | 1.0299 | 1.0273 | 0.3657 | | 0.0793 | 19.0 | 65797 | 1.0217 | 1.0149 | 0.3602 | | 0.0769 | 20.0 | 69260 | 1.0025 | 1.0334 | 0.3533 | | 0.0727 | 21.0 | 72723 | 1.0101 | 1.0386 | 0.3510 | | 0.0654 | 22.0 | 76186 | 1.0316 | 1.0345 | 0.3494 | | 0.0605 | 23.0 | 79649 | 1.0584 | 1.0254 | 0.3438 | | 0.0566 | 24.0 | 83112 | 1.0380 | 1.0479 | 0.3431 | | 0.0507 | 25.0 | 86575 | 1.0691 | 1.0427 | 0.3413 | | 0.0498 | 26.0 | 90038 | 1.1261 | 1.0399 | 0.3407 | | 0.0444 | 27.0 | 93501 | 1.1671 | 1.0578 | 0.3417 | | 0.0444 | 28.0 | 96964 | 1.1998 | 1.0621 | 0.3414 | | 0.0439 | 29.0 | 100427 | 1.1988 | 1.0568 | 0.3406 | | 0.0441 | 29.9915 | 103860 | 1.2041 | 1.0594 | 0.3410 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3