--- library_name: transformers license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - automatic-speech-recognition - original_kakeiken_W_elevator_hall - generated_from_trainer metrics: - wer model-index: - name: Hubert-kakeiken-W-elevator_hall results: [] --- # Hubert-kakeiken-W-elevator_hall This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co./rinna/japanese-hubert-base) on the ORIGINAL_KAKEIKEN_W_ELEVATOR_HALL - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.0253 - Wer: 0.9988 - Cer: 1.0162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 53.9873 | 1.0 | 820 | 19.7137 | 1.0 | 1.1284 | | 16.2788 | 2.0 | 1640 | 12.8321 | 1.0 | 1.1284 | | 11.6832 | 3.0 | 2460 | 5.6187 | 1.0 | 1.1284 | | 4.3059 | 4.0 | 3280 | 3.3938 | 1.0 | 1.1284 | | 3.1294 | 5.0 | 4100 | 2.8854 | 1.0 | 1.1284 | | 2.6448 | 6.0 | 4920 | 1.4073 | 1.0 | 1.1019 | | 1.022 | 7.0 | 5740 | 0.6323 | 1.0 | 1.0336 | | 0.4449 | 8.0 | 6560 | 0.3110 | 0.9988 | 1.0403 | | 0.305 | 9.0 | 7380 | 0.2348 | 0.9991 | 1.0485 | | 0.1895 | 10.0 | 8200 | 0.1109 | 0.9988 | 1.0230 | | 0.1437 | 11.0 | 9020 | 0.0931 | 0.9990 | 1.0221 | | 0.1258 | 12.0 | 9840 | 0.0828 | 0.9988 | 1.0258 | | 0.1175 | 13.0 | 10660 | 0.0814 | 0.9991 | 1.0232 | | 0.1083 | 14.0 | 11480 | 0.0415 | 0.9988 | 1.0194 | | 0.0974 | 15.0 | 12300 | 0.0653 | 0.9990 | 1.0239 | | 0.0967 | 16.0 | 13120 | 0.0495 | 0.9991 | 1.0200 | | 0.087 | 17.0 | 13940 | 0.0601 | 0.9990 | 1.0224 | | 0.0798 | 18.0 | 14760 | 0.0544 | 0.9990 | 1.0218 | | 0.0719 | 19.0 | 15580 | 0.0426 | 0.9990 | 1.0191 | | 0.0731 | 20.0 | 16400 | 0.0587 | 0.9991 | 1.0208 | | 0.0693 | 21.0 | 17220 | 0.0603 | 0.9988 | 1.0222 | | 0.0614 | 22.0 | 18040 | 0.0361 | 0.9988 | 1.0191 | | 0.0582 | 23.0 | 18860 | 0.0332 | 0.9988 | 1.0173 | | 0.0535 | 24.0 | 19680 | 0.0347 | 0.9988 | 1.0172 | | 0.0467 | 25.0 | 20500 | 0.0334 | 0.9988 | 1.0180 | | 0.0456 | 26.0 | 21320 | 0.0283 | 0.9988 | 1.0164 | | 0.0389 | 27.0 | 22140 | 0.0361 | 0.9988 | 1.0172 | | 0.04 | 28.0 | 22960 | 0.0258 | 0.9988 | 1.0167 | | 0.0348 | 29.0 | 23780 | 0.0328 | 0.9990 | 1.0176 | | 0.0343 | 30.0 | 24600 | 0.0276 | 0.9988 | 1.0162 | | 0.0323 | 31.0 | 25420 | 0.0297 | 0.9988 | 1.0165 | | 0.0283 | 32.0 | 26240 | 0.0291 | 0.9988 | 1.0165 | | 0.0275 | 33.0 | 27060 | 0.0252 | 0.9988 | 1.0161 | | 0.0256 | 34.0 | 27880 | 0.0245 | 0.9988 | 1.0164 | | 0.0241 | 35.0 | 28700 | 0.0240 | 0.9988 | 1.0159 | | 0.0237 | 36.0 | 29520 | 0.0278 | 0.9988 | 1.0166 | | 0.0238 | 37.0 | 30340 | 0.0275 | 0.9988 | 1.0163 | | 0.022 | 38.0 | 31160 | 0.0247 | 0.9988 | 1.0163 | | 0.0184 | 39.0 | 31980 | 0.0262 | 0.9988 | 1.0163 | | 0.0199 | 39.9518 | 32760 | 0.0244 | 0.9988 | 1.0160 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0