dmytromishkin commited on
Commit
22889e1
·
1 Parent(s): 2c41c9d

initial commit

Browse files
README.md CHANGED
@@ -1,3 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
 
 
1
+ # Handcrafted solution example for the S23DR competition
2
+
3
+ This repo provides an example of a simple algorithm to reconstruct wireframe and submit to S23DR competition.
4
+
5
+
6
+ The repo consistst of the following parts:
7
+
8
+ - `script.py` - the main file, which is run by the competition space. It should produce `submission.parquet` as the result of the run.
9
+ - `hoho.py` - the file for parsing the dataset at the inference time. Do NOT change it.
10
+ - `handcrafted_solution.py` - contains the actual implementation of the algorithm
11
+ - other `*.py` files - helper i/o and visualization utilities
12
+ - `packages/` - the directory to put python wheels for the custom packages you want to install and use.
13
+
14
+ ## Solution description
15
+
16
+ The solution is is simple.
17
+
18
+ 1. Using provided (but noisy) semantic segmentation called `gestalt`, it taks the centroids of the vertex classes - `apex` and `eave_end_point` and projects them to 3D using provided (also noisy) monocular depth.
19
+ 2. The vertices are connected using the same segmentation, by checking for edges classes to be present - `['eave', 'ridge', 'rake', 'valley']`.
20
+ 3. All the "per-image" vertex predictions are merged in 3D space if their distance is less than threshold.
21
+ 4. All vertices, which have zero connections, are removed.
22
+
23
+
24
+ ## Example on the training set
25
+
26
+ See in [notebooks/example_on_training.ipynb](notebooks/example_on_training.ipynb)
27
+
28
  ---
29
  license: apache-2.0
30
  ---
31
+
color_mappings.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gestalt_color_mapping = {
2
+ "unclassified": (215, 62, 138),
3
+ "apex": (235, 88, 48),
4
+ "eave_end_point": (248, 130, 228),
5
+ "flashing_end_point": (71, 11, 161),
6
+ "ridge": (214, 251, 248),
7
+ "rake": (13, 94, 47),
8
+ "eave": (54, 243, 63),
9
+ "post": (187, 123, 236),
10
+ "ground_line": (136, 206, 14),
11
+ "flashing": (162, 162, 32),
12
+ "step_flashing": (169, 255, 219),
13
+ "hip": (8, 89, 52),
14
+ "valley": (85, 27, 65),
15
+ "roof": (215, 232, 179),
16
+ "door": (110, 52, 23),
17
+ "garage": (50, 233, 171),
18
+ "window": (230, 249, 40),
19
+ "shutter": (122, 4, 233),
20
+ "fascia": (95, 230, 240),
21
+ "soffit": (2, 102, 197),
22
+ "horizontal_siding": (131, 88, 59),
23
+ "vertical_siding": (110, 187, 198),
24
+ "brick": (171, 252, 7),
25
+ "concrete": (32, 47, 246),
26
+ "other_wall": (112, 61, 240),
27
+ "trim": (151, 206, 58),
28
+ "unknown": (127, 127, 127),
29
+ }
30
+
31
+ ade20k_color_mapping = {
32
+ 'wall': (120, 120, 120),
33
+ 'building;edifice': (180, 120, 120),
34
+ 'sky': (6, 230, 230),
35
+ 'floor;flooring': (80, 50, 50),
36
+ 'tree': (4, 200, 3),
37
+ 'ceiling': (120, 120, 80),
38
+ 'road;route': (140, 140, 140),
39
+ 'bed': (204, 5, 255),
40
+ 'windowpane;window': (230, 230, 230),
41
+ 'grass': (4, 250, 7),
42
+ 'cabinet': (224, 5, 255),
43
+ 'sidewalk;pavement': (235, 255, 7),
44
+ 'person;individual;someone;somebody;mortal;soul': (150, 5, 61),
45
+ 'earth;ground': (120, 120, 70),
46
+ 'door;double;door': (8, 255, 51),
47
+ 'table': (255, 6, 82),
48
+ 'mountain;mount': (143, 255, 140),
49
+ 'plant;flora;plant;life': (204, 255, 4),
50
+ 'curtain;drape;drapery;mantle;pall': (255, 51, 7),
51
+ 'chair': (204, 70, 3),
52
+ 'car;auto;automobile;machine;motorcar': (0, 102, 200),
53
+ 'water': (61, 230, 250),
54
+ 'painting;picture': (255, 6, 51),
55
+ 'sofa;couch;lounge': (11, 102, 255),
56
+ 'shelf': (255, 7, 71),
57
+ 'house': (255, 9, 224),
58
+ 'sea': (9, 7, 230),
59
+ 'mirror': (220, 220, 220),
60
+ 'rug;carpet;carpeting': (255, 9, 92),
61
+ 'field': (112, 9, 255),
62
+ 'armchair': (8, 255, 214),
63
+ 'seat': (7, 255, 224),
64
+ 'fence;fencing': (255, 184, 6),
65
+ 'desk': (10, 255, 71),
66
+ 'rock;stone': (255, 41, 10),
67
+ 'wardrobe;closet;press': (7, 255, 255),
68
+ 'lamp': (224, 255, 8),
69
+ 'bathtub;bathing;tub;bath;tub': (102, 8, 255),
70
+ 'railing;rail': (255, 61, 6),
71
+ 'cushion': (255, 194, 7),
72
+ 'base;pedestal;stand': (255, 122, 8),
73
+ 'box': (0, 255, 20),
74
+ 'column;pillar': (255, 8, 41),
75
+ 'signboard;sign': (255, 5, 153),
76
+ 'chest;of;drawers;chest;bureau;dresser': (6, 51, 255),
77
+ 'counter': (235, 12, 255),
78
+ 'sand': (160, 150, 20),
79
+ 'sink': (0, 163, 255),
80
+ 'skyscraper': (140, 140, 140),
81
+ 'fireplace;hearth;open;fireplace': (250, 10, 15),
82
+ 'refrigerator;icebox': (20, 255, 0),
83
+ 'grandstand;covered;stand': (31, 255, 0),
84
+ 'path': (255, 31, 0),
85
+ 'stairs;steps': (255, 224, 0),
86
+ 'runway': (153, 255, 0),
87
+ 'case;display;case;showcase;vitrine': (0, 0, 255),
88
+ 'pool;table;billiard;table;snooker;table': (255, 71, 0),
89
+ 'pillow': (0, 235, 255),
90
+ 'screen;door;screen': (0, 173, 255),
91
+ 'stairway;staircase': (31, 0, 255),
92
+ 'river': (11, 200, 200),
93
+ 'bridge;span': (255 ,82, 0),
94
+ 'bookcase': (0, 255, 245),
95
+ 'blind;screen': (0, 61, 255),
96
+ 'coffee;table;cocktail;table': (0, 255, 112),
97
+ 'toilet;can;commode;crapper;pot;potty;stool;throne': (0, 255, 133),
98
+ 'flower': (255, 0, 0),
99
+ 'book': (255, 163, 0),
100
+ 'hill': (255, 102, 0),
101
+ 'bench': (194, 255, 0),
102
+ 'countertop': (0, 143, 255),
103
+ 'stove;kitchen;stove;range;kitchen;range;cooking;stove': (51, 255, 0),
104
+ 'palm;palm;tree': (0, 82, 255),
105
+ 'kitchen;island': (0, 255, 41),
106
+ 'computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system': (0, 255, 173),
107
+ 'swivel;chair': (10, 0, 255),
108
+ 'boat': (173, 255, 0),
109
+ 'bar': (0, 255, 153),
110
+ 'arcade;machine': (255, 92, 0),
111
+ 'hovel;hut;hutch;shack;shanty': (255, 0, 255),
112
+ 'bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle': (255, 0, 245),
113
+ 'towel': (255, 0, 102),
114
+ 'light;light;source': (255, 173, 0),
115
+ 'truck;motortruck': (255, 0, 20),
116
+ 'tower': (255, 184, 184),
117
+ 'chandelier;pendant;pendent': (0, 31, 255),
118
+ 'awning;sunshade;sunblind': (0, 255, 61),
119
+ 'streetlight;street;lamp': (0, 71, 255),
120
+ 'booth;cubicle;stall;kiosk': (255, 0, 204),
121
+ 'television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box': (0, 255, 194),
122
+ 'airplane;aeroplane;plane': (0, 255, 82),
123
+ 'dirt;track': (0, 10, 255),
124
+ 'apparel;wearing;apparel;dress;clothes': (0, 112, 255),
125
+ 'pole': (51, 0, 255),
126
+ 'land;ground;soil': (0, 194, 255),
127
+ 'bannister;banister;balustrade;balusters;handrail': (0, 122, 255),
128
+ 'escalator;moving;staircase;moving;stairway': (0, 255, 163),
129
+ 'ottoman;pouf;pouffe;puff;hassock': (255, 153, 0),
130
+ 'bottle': (0, 255, 10),
131
+ 'buffet;counter;sideboard': (255, 112, 0),
132
+ 'poster;posting;placard;notice;bill;card': (143, 255, 0),
133
+ 'stage': (82, 0, 255),
134
+ 'van': (163, 255, 0),
135
+ 'ship': (255, 235, 0),
136
+ 'fountain': (8, 184, 170),
137
+ 'conveyer;belt;conveyor;belt;conveyer;conveyor;transporter': (133, 0, 255),
138
+ 'canopy': (0, 255, 92),
139
+ 'washer;automatic;washer;washing;machine': (184, 0, 255),
140
+ 'plaything;toy': (255, 0, 31),
141
+ 'swimming;pool;swimming;bath;natatorium': (0, 184, 255),
142
+ 'stool': (0, 214, 255),
143
+ 'barrel;cask': (255, 0, 112),
144
+ 'basket;handbasket': (92, 255, 0),
145
+ 'waterfall;falls': (0, 224, 255),
146
+ 'tent;collapsible;shelter': (112, 224, 255),
147
+ 'bag': (70, 184, 160),
148
+ 'minibike;motorbike': (163, 0, 255),
149
+ 'cradle': (153, 0, 255),
150
+ 'oven': (71, 255, 0),
151
+ 'ball': (255, 0, 163),
152
+ 'food;solid;food': (255, 204, 0),
153
+ 'step;stair': (255, 0, 143),
154
+ 'tank;storage;tank': (0, 255, 235),
155
+ 'trade;name;brand;name;brand;marque': (133, 255, 0),
156
+ 'microwave;microwave;oven': (255, 0, 235),
157
+ 'pot;flowerpot': (245, 0, 255),
158
+ 'animal;animate;being;beast;brute;creature;fauna': (255, 0, 122),
159
+ 'bicycle;bike;wheel;cycle': (255, 245, 0),
160
+ 'lake': (10, 190, 212),
161
+ 'dishwasher;dish;washer;dishwashing;machine': (214, 255, 0),
162
+ 'screen;silver;screen;projection;screen': (0, 204, 255),
163
+ 'blanket;cover': (20, 0, 255),
164
+ 'sculpture': (255, 255, 0),
165
+ 'hood;exhaust;hood': (0, 153, 255),
166
+ 'sconce': (0, 41, 255),
167
+ 'vase': (0, 255, 204),
168
+ 'traffic;light;traffic;signal;stoplight': (41, 0, 255),
169
+ 'tray': (41, 255, 0),
170
+ 'ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin': (173, 0, 255),
171
+ 'fan': (0, 245, 255),
172
+ 'pier;wharf;wharfage;dock': (71, 0, 255),
173
+ 'crt;screen': (122, 0, 255),
174
+ 'plate': (0, 255, 184),
175
+ 'monitor;monitoring;device': (0, 92, 255),
176
+ 'bulletin;board;notice;board': (184, 255, 0),
177
+ 'shower': (0, 133, 255),
178
+ 'radiator': (255, 214, 0),
179
+ 'glass;drinking;glass': (25, 194, 194),
180
+ 'clock': (102, 255, 0),
181
+ 'flag': (92, 0, 255),
182
+ }
handcrafted_solution.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Description: This file contains the handcrafted solution for the task of wireframe reconstruction
2
+
3
+ import io
4
+ from read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
5
+ from PIL import Image as PImage
6
+ import numpy as np
7
+ from color_mappings import gestalt_color_mapping, ade20k_color_mapping
8
+ from collections import defaultdict
9
+ import cv2
10
+ from typing import Tuple, List
11
+ from scipy.spatial.distance import cdist
12
+
13
+
14
+ def empty_solution():
15
+ '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
16
+ return np.zeros((2,3)), [(0, 1)], [0]
17
+
18
+
19
+ def convert_entry_to_human_readable(entry):
20
+ out = {}
21
+ already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
22
+ for k, v in entry.items():
23
+ if k in already_good:
24
+ out[k] = v
25
+ continue
26
+ if k == 'points3d':
27
+ out[k] = read_points3D_binary(fid=io.BytesIO(v))
28
+ if k == 'cameras':
29
+ out[k] = read_cameras_binary(fid=io.BytesIO(v))
30
+ if k == 'images':
31
+ out[k] = read_images_binary(fid=io.BytesIO(v))
32
+ if k in ['ade20k', 'gestalt']:
33
+ out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
34
+ if k == 'depthcm':
35
+ out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
36
+ return out
37
+
38
+
39
+ def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0):
40
+ '''Get the vertices and edges from the gestalt segmentation mask of the house'''
41
+ vertices = []
42
+ connections = []
43
+ # Apex
44
+ apex_color = np.array(gestalt_color_mapping['apex'])
45
+ apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
46
+ if apex_mask.sum() > 0:
47
+ output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
48
+ (numLabels, labels, stats, centroids) = output
49
+ stats, centroids = stats[1:], centroids[1:]
50
+
51
+ for i in range(numLabels-1):
52
+ vert = {"xy": centroids[i], "type": "apex"}
53
+ vertices.append(vert)
54
+
55
+ eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
56
+ eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
57
+ if eave_end_mask.sum() > 0:
58
+ output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
59
+ (numLabels, labels, stats, centroids) = output
60
+ stats, centroids = stats[1:], centroids[1:]
61
+
62
+ for i in range(numLabels-1):
63
+ vert = {"xy": centroids[i], "type": "eave_end_point"}
64
+ vertices.append(vert)
65
+ # Connectivity
66
+ apex_pts = []
67
+ apex_pts_idxs = []
68
+ for j, v in enumerate(vertices):
69
+ apex_pts.append(v['xy'])
70
+ apex_pts_idxs.append(j)
71
+ apex_pts = np.array(apex_pts)
72
+
73
+ # Ridge connects two apex points
74
+ for edge_class in ['eave', 'ridge', 'rake', 'valley']:
75
+ edge_color = np.array(gestalt_color_mapping[edge_class])
76
+ mask = cv2.morphologyEx(cv2.inRange(gest_seg_np,
77
+ edge_color-0.5,
78
+ edge_color+0.5),
79
+ cv2.MORPH_DILATE, np.ones((11, 11)))
80
+ line_img = np.copy(gest_seg_np) * 0
81
+ if mask.sum() > 0:
82
+ output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
83
+ (numLabels, labels, stats, centroids) = output
84
+ stats, centroids = stats[1:], centroids[1:]
85
+ edges = []
86
+ for i in range(1, numLabels):
87
+ y,x = np.where(labels == i)
88
+ xleft_idx = np.argmin(x)
89
+ x_left = x[xleft_idx]
90
+ y_left = y[xleft_idx]
91
+ xright_idx = np.argmax(x)
92
+ x_right = x[xright_idx]
93
+ y_right = y[xright_idx]
94
+ edges.append((x_left, y_left, x_right, y_right))
95
+ cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2)
96
+ edges = np.array(edges)
97
+ if (len(apex_pts) < 2) or len(edges) <1:
98
+ continue
99
+ pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:]))
100
+ connectivity_mask = pts_to_edges_dist <= edge_th
101
+ edge_connects = connectivity_mask.sum(axis=0)
102
+ for edge_idx, edgesum in enumerate(edge_connects):
103
+ if edgesum>=2:
104
+ connected_verts = np.where(connectivity_mask[:,edge_idx])[0]
105
+ for a_i, a in enumerate(connected_verts):
106
+ for b in connected_verts[a_i+1:]:
107
+ connections.append((a, b))
108
+ return vertices, connections
109
+
110
+ def get_uv_depth(vertices, depth):
111
+ '''Get the depth of the vertices from the depth image'''
112
+ uv = []
113
+ for v in vertices:
114
+ uv.append(v['xy'])
115
+ uv = np.array(uv)
116
+ uv_int = uv.astype(np.int32)
117
+ H, W = depth.shape[:2]
118
+ uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1)
119
+ uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1)
120
+ vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])]
121
+ return uv, vertex_depth
122
+
123
+
124
+ def merge_vertices_3d(vert_edge_per_image, th=0.1):
125
+ '''Merge vertices that are close to each other in 3D space and are of same types'''
126
+ all_3d_vertices = []
127
+ connections_3d = []
128
+ all_indexes = []
129
+ cur_start = 0
130
+ types = []
131
+ for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
132
+ types += [int(v['type']=='apex') for v in vertices]
133
+ all_3d_vertices.append(vertices_3d)
134
+ connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
135
+ cur_start+=len(vertices_3d)
136
+ all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
137
+ #print (connections_3d)
138
+ distmat = cdist(all_3d_vertices, all_3d_vertices)
139
+ types = np.array(types).reshape(-1,1)
140
+ same_types = cdist(types, types)
141
+ mask_to_merge = (distmat <= th) & (same_types==0)
142
+ new_vertices = []
143
+ new_connections = []
144
+ to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
145
+ to_merge_final = defaultdict(list)
146
+ for i in range(len(all_3d_vertices)):
147
+ for j in to_merge:
148
+ if i in j:
149
+ to_merge_final[i]+=j
150
+ for k, v in to_merge_final.items():
151
+ to_merge_final[k] = list(set(v))
152
+ already_there = set()
153
+ merged = []
154
+ for k, v in to_merge_final.items():
155
+ if k in already_there:
156
+ continue
157
+ merged.append(v)
158
+ for vv in v:
159
+ already_there.add(vv)
160
+ old_idx_to_new = {}
161
+ count=0
162
+ for idxs in merged:
163
+ new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
164
+ for idx in idxs:
165
+ old_idx_to_new[idx] = count
166
+ count +=1
167
+ #print (connections_3d)
168
+ new_vertices=np.array(new_vertices)
169
+ #print (connections_3d)
170
+ for conn in connections_3d:
171
+ new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
172
+ if new_con[0] == new_con[1]:
173
+ continue
174
+ if new_con not in new_connections:
175
+ new_connections.append(new_con)
176
+ #print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
177
+ return new_vertices, new_connections
178
+
179
+ def prune_not_connected(all_3d_vertices, connections_3d):
180
+ '''Prune vertices that are not connected to any other vertex'''
181
+ connected = defaultdict(list)
182
+ for c in connections_3d:
183
+ connected[c[0]].append(c)
184
+ connected[c[1]].append(c)
185
+ new_indexes = {}
186
+ new_verts = []
187
+ connected_out = []
188
+ for k,v in connected.items():
189
+ vert = all_3d_vertices[k]
190
+ if tuple(vert) not in new_verts:
191
+ new_verts.append(tuple(vert))
192
+ new_indexes[k]=len(new_verts) -1
193
+ for k,v in connected.items():
194
+ for vv in v:
195
+ connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]]))
196
+ connected_out=list(set(connected_out))
197
+
198
+ return np.array(new_verts), connected_out
199
+
200
+
201
+ def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
202
+ good_entry = convert_entry_to_human_readable(entry)
203
+ vert_edge_per_image = {}
204
+ for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'],
205
+ good_entry['depthcm'],
206
+ good_entry['K'],
207
+ good_entry['R'],
208
+ good_entry['t']
209
+ )):
210
+ gest_seg = gest.resize(depth.size)
211
+ gest_seg_np = np.array(gest_seg).astype(np.uint8)
212
+ # Metric3D
213
+ depth_np = np.array(depth) / 2.5 # 2.5 is the scale estimation coefficient
214
+ vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 20.)
215
+ if (len(vertices) < 2) or (len(connections) < 1):
216
+ print (f'Not enough vertices or connections in image {i}')
217
+ vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
218
+ continue
219
+ uv, depth_vert = get_uv_depth(vertices, depth_np)
220
+ # Normalize the uv to the camera intrinsics
221
+ xy_local = np.ones((len(uv), 3))
222
+ xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0]
223
+ xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1]
224
+ # Get the 3D vertices
225
+ vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None])
226
+ world_to_cam = np.eye(4)
227
+ world_to_cam[:3, :3] = R
228
+ world_to_cam[:3, 3] = t.reshape(-1)
229
+ cam_to_world = np.linalg.inv(world_to_cam)
230
+ vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
231
+ vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
232
+ vert_edge_per_image[i] = vertices, connections, vertices_3d
233
+ all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0)
234
+ all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d)
235
+ if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
236
+ print (f'Not enough vertices or connections in the 3D vertices')
237
+ return empty_solution()
238
+ if visualize:
239
+ from viz3d import plot_estimate_and_gt
240
+ plot_estimate_and_gt(all_3d_vertices_clean, connections_3d_clean, good_entry['wf_vertices'],
241
+ good_entry['wf_edges'])
242
+ return all_3d_vertices_clean, connections_3d_clean, [0 for i in range(len(connections_3d_clean))]
hoho.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import shutil
4
+ from pathlib import Path
5
+ from typing import Dict
6
+
7
+ from PIL import ImageFile
8
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
9
+
10
+ LOCAL_DATADIR = None
11
+
12
+ def setup(local_dir='./data/usm-training-data/data'):
13
+
14
+ # If we are in the test environment, we need to link the data directory to the correct location
15
+ tmp_datadir = Path('/tmp/data/data')
16
+ local_test_datadir = Path('./data/usm-test-data-x/data')
17
+ local_val_datadir = Path(local_dir)
18
+
19
+ os.system('pwd')
20
+ os.system('ls -lahtr .')
21
+
22
+ if tmp_datadir.exists() and not local_test_datadir.exists():
23
+ global LOCAL_DATADIR
24
+ LOCAL_DATADIR = local_test_datadir
25
+ # shutil.move(datadir, './usm-test-data-x/data')
26
+ print(f"Linking {tmp_datadir} to {LOCAL_DATADIR} (we are in the test environment)")
27
+ LOCAL_DATADIR.parent.mkdir(parents=True, exist_ok=True)
28
+ LOCAL_DATADIR.symlink_to(tmp_datadir)
29
+ else:
30
+ LOCAL_DATADIR = local_val_datadir
31
+ print(f"Using {LOCAL_DATADIR} as the data directory (we are running locally)")
32
+
33
+ # os.system("ls -lahtr")
34
+
35
+ assert LOCAL_DATADIR.exists(), f"Data directory {LOCAL_DATADIR} does not exist"
36
+ return LOCAL_DATADIR
37
+
38
+
39
+
40
+
41
+ import importlib
42
+ from pathlib import Path
43
+ import subprocess
44
+
45
+ def download_package(package_name, path_to_save='packages'):
46
+ """
47
+ Downloads a package using pip and saves it to a specified directory.
48
+
49
+ Parameters:
50
+ package_name (str): The name of the package to download.
51
+ path_to_save (str): The path to the directory where the package will be saved.
52
+ """
53
+ try:
54
+ # pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
55
+ subprocess.check_call([subprocess.sys.executable, "-m", "pip", "download", package_name,
56
+ "-d", str(Path(path_to_save)/package_name), # Download the package to the specified directory
57
+ "--platform", "manylinux1_x86_64", # Specify the platform
58
+ "--python-version", "38", # Specify the Python version
59
+ "--only-binary=:all:"]) # Download only binary packages
60
+ print(f'Package "{package_name}" downloaded successfully')
61
+ except subprocess.CalledProcessError as e:
62
+ print(f'Failed to downloaded package "{package_name}". Error: {e}')
63
+
64
+
65
+ def install_package_from_local_file(package_name, folder='packages'):
66
+ """
67
+ Installs a package from a local .whl file or a directory containing .whl files using pip.
68
+
69
+ Parameters:
70
+ path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
71
+ """
72
+ try:
73
+ pth = str(Path(folder) / package_name)
74
+ subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
75
+ "--no-index", # Do not use package index
76
+ "--find-links", pth, # Look for packages in the specified directory or at the file
77
+ package_name]) # Specify the package to install
78
+ print(f"Package installed successfully from {pth}")
79
+ except subprocess.CalledProcessError as e:
80
+ print(f"Failed to install package from {pth}. Error: {e}")
81
+
82
+
83
+ def importt(module_name, as_name=None):
84
+ """
85
+ Imports a module and returns it.
86
+
87
+ Parameters:
88
+ module_name (str): The name of the module to import.
89
+ as_name (str): The name to use for the imported module. If None, the original module name will be used.
90
+
91
+ Returns:
92
+ The imported module.
93
+ """
94
+ for _ in range(2):
95
+ try:
96
+ if as_name is None:
97
+ print(f'imported {module_name}')
98
+ return importlib.import_module(module_name)
99
+ else:
100
+ print(f'imported {module_name} as {as_name}')
101
+ return importlib.import_module(module_name, as_name)
102
+ except ModuleNotFoundError as e:
103
+ install_package_from_local_file(module_name)
104
+ print(f"Failed to import module {module_name}. Error: {e}")
105
+
106
+
107
+ def prepare_submission():
108
+ # Download packages from requirements.txt
109
+ if Path('requirements.txt').exists():
110
+ print('downloading packages from requirements.txt')
111
+ Path('packages').mkdir(exist_ok=True)
112
+ with open('requirements.txt') as f:
113
+ packages = f.readlines()
114
+ for p in packages:
115
+ download_package(p.strip())
116
+
117
+
118
+ print('all packages downloaded. Don\'t foget to include the packages in the submission by adding them with git lfs.')
119
+
120
+
121
+ def Rt_to_eye_target(im, K, R, t):
122
+ height = im.height
123
+ focal_length = K[0,0]
124
+ fov = 2.0 * np.arctan2((0.5 * height), focal_length) / (np.pi / 180.0)
125
+
126
+ x_axis, y_axis, z_axis = R
127
+
128
+ eye = -(R.T @ t).squeeze()
129
+ z_axis = z_axis.squeeze()
130
+ target = eye + z_axis
131
+ up = -y_axis
132
+
133
+ return eye, target, up, fov
134
+
135
+
136
+ ########## general utilities ##########
137
+ import contextlib
138
+ import tempfile
139
+ from pathlib import Path
140
+
141
+ @contextlib.contextmanager
142
+ def working_directory(path):
143
+ """Changes working directory and returns to previous on exit."""
144
+ prev_cwd = Path.cwd()
145
+ os.chdir(path)
146
+ try:
147
+ yield
148
+ finally:
149
+ os.chdir(prev_cwd)
150
+
151
+ @contextlib.contextmanager
152
+ def temp_working_directory():
153
+ with tempfile.TemporaryDirectory(dir='.') as D:
154
+ with working_directory(D):
155
+ yield
156
+
157
+
158
+ ############# Dataset #############
159
+ def proc(row, split='train'):
160
+ # column_names_train = ['ade20k', 'depthcm', 'gestalt', 'colmap', 'KRt', 'mesh', 'wireframe']
161
+ # column_names_test = ['ade20k', 'depthcm', 'gestalt', 'colmap', 'KRt', 'wireframe']
162
+ # cols = column_names_train if split == 'train' else column_names_test
163
+ out = {}
164
+ for k, v in row.items():
165
+ colname = k.split('.')[0]
166
+ if colname in {'ade20k', 'depthcm', 'gestalt'}:
167
+ if colname in out:
168
+ out[colname].append(v)
169
+ else:
170
+ out[colname] = [v]
171
+ elif colname in {'wireframe', 'mesh'}:
172
+ # out.update({a: b.tolist() for a,b in v.items()})
173
+ out.update({a: b for a,b in v.items()})
174
+ elif colname in 'kr':
175
+ out[colname.upper()] = v
176
+ else:
177
+ out[colname] = v
178
+
179
+ return Sample(out)
180
+
181
+
182
+ class Sample(Dict):
183
+ def __repr__(self):
184
+ return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
185
+
186
+
187
+
188
+ def get_params():
189
+ exmaple_param_dict = {
190
+ "competition_id": "usm3d/S23DR",
191
+ "competition_type": "script",
192
+ "metric": "custom",
193
+ "token": "hf_**********************************",
194
+ "team_id": "local-test-team_id",
195
+ "submission_id": "local-test-submission_id",
196
+ "submission_id_col": "__key__",
197
+ "submission_cols": [
198
+ "__key__",
199
+ "wf_edges",
200
+ "wf_vertices",
201
+ "edge_semantics"
202
+ ],
203
+ "submission_rows": 180,
204
+ "output_path": ".",
205
+ "submission_repo": "<THE HF MODEL ID of THIS REPO",
206
+ "time_limit": 7200,
207
+ "dataset": "usm3d/usm-test-data-x",
208
+ "submission_filenames": [
209
+ "submission.parquet"
210
+ ]
211
+ }
212
+
213
+ param_path = Path('params.json')
214
+
215
+ if not param_path.exists():
216
+ print('params.json not found (this means we probably aren\'t in the test env). Using example params.')
217
+ params = exmaple_param_dict
218
+ else:
219
+ print('found params.json (this means we are probably in the test env). Using params from file.')
220
+ with param_path.open() as f:
221
+ params = json.load(f)
222
+ print(params)
223
+ return params
224
+
225
+
226
+
227
+ import webdataset as wds
228
+ import numpy as np
229
+
230
+ def get_dataset(decode='pil', proc=proc, split='train', dataset_type='webdataset'):
231
+ if LOCAL_DATADIR is None:
232
+ raise ValueError('LOCAL_DATADIR is not set. Please run setup() first.')
233
+
234
+ local_dir = Path(LOCAL_DATADIR)
235
+ if split != 'all':
236
+ local_dir = local_dir / split
237
+
238
+ paths = [str(p) for p in local_dir.rglob('*.tar.gz')]
239
+
240
+ dataset = wds.WebDataset(paths)
241
+ if decode is not None:
242
+ dataset = dataset.decode(decode)
243
+ else:
244
+ dataset = dataset.decode()
245
+
246
+ dataset = dataset.map(proc)
247
+
248
+ if dataset_type == 'webdataset':
249
+ return dataset
250
+
251
+ if dataset_type == 'hf':
252
+ import datasets
253
+ from datasets import Features, Value, Sequence, Image, Array2D
254
+
255
+ if split == 'train':
256
+ return datasets.IterableDataset.from_generator(lambda: dataset.iterator())
257
+ elif split == 'val':
258
+ return datasets.IterableDataset.from_generator(lambda: dataset.iterator())
259
+
260
+
261
+
notebooks/.ipynb_checkpoints/example-checkpoint.ipynb ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "503c6bcb-aa46-46c6-8b86-566b0a470b43",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import sys\n",
11
+ "sys.path.append('..')\n",
12
+ "from handcrafted_solution import *\n",
13
+ "from viz3d import *\n",
14
+ "from read_write_colmap import *"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": 4,
20
+ "id": "8bdcd910-bac0-44be-8344-cb901ea2f369",
21
+ "metadata": {},
22
+ "outputs": [
23
+ {
24
+ "name": "stdout",
25
+ "output_type": "stream",
26
+ "text": [
27
+ "Collecting webdataset\n",
28
+ " Downloading webdataset-0.2.86-py3-none-any.whl.metadata (29 kB)\n",
29
+ "Collecting braceexpand (from webdataset)\n",
30
+ " Downloading braceexpand-0.1.7-py2.py3-none-any.whl.metadata (3.0 kB)\n",
31
+ "Requirement already satisfied: numpy in /Users/dmytromishkin/miniconda3/envs/pytorch/lib/python3.9/site-packages (from webdataset) (1.24.4)\n",
32
+ "Requirement already satisfied: pyyaml in /Users/dmytromishkin/miniconda3/envs/pytorch/lib/python3.9/site-packages (from webdataset) (6.0)\n",
33
+ "Downloading webdataset-0.2.86-py3-none-any.whl (70 kB)\n",
34
+ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.4/70.4 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
35
+ "\u001b[?25hDownloading braceexpand-0.1.7-py2.py3-none-any.whl (5.9 kB)\n",
36
+ "Installing collected packages: braceexpand, webdataset\n",
37
+ "Successfully installed braceexpand-0.1.7 webdataset-0.2.86\n"
38
+ ]
39
+ }
40
+ ],
41
+ "source": [
42
+ "!pip install webdataset"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": 5,
48
+ "id": "88f4fc8f-efa9-404b-9073-c7d4a73f9075",
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "import webdataset as wds \n",
53
+ "import numpy as np\n",
54
+ "import datasets\n",
55
+ "from datasets import Features, Value, Sequence, Image, Array2D\n"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": 7,
61
+ "id": "080f1a12-06bf-4b97-8a52-d7cf416adede",
62
+ "metadata": {},
63
+ "outputs": [
64
+ {
65
+ "data": {
66
+ "application/vnd.jupyter.widget-view+json": {
67
+ "model_id": "809ae1d7cc0e48718433b6896bb84067",
68
+ "version_major": 2,
69
+ "version_minor": 0
70
+ },
71
+ "text/plain": [
72
+ "Resolving data files: 0%| | 0/25 [00:00<?, ?it/s]"
73
+ ]
74
+ },
75
+ "metadata": {},
76
+ "output_type": "display_data"
77
+ },
78
+ {
79
+ "data": {
80
+ "application/vnd.jupyter.widget-view+json": {
81
+ "model_id": "86f66f66049746eeb98c9a15972c2ca2",
82
+ "version_major": 2,
83
+ "version_minor": 0
84
+ },
85
+ "text/plain": [
86
+ "Downloading data: 0%| | 0.00/1.01G [00:00<?, ?B/s]"
87
+ ]
88
+ },
89
+ "metadata": {},
90
+ "output_type": "display_data"
91
+ },
92
+ {
93
+ "ename": "KeyboardInterrupt",
94
+ "evalue": "",
95
+ "output_type": "error",
96
+ "traceback": [
97
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
98
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
99
+ "Cell \u001b[0;32mIn[7], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdatasets\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m load_dataset\n\u001b[0;32m----> 2\u001b[0m ds \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtest-org-usm3d/usm-training-data\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
100
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/load.py:2574\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2571\u001b[0m try_from_hf_gcs \u001b[38;5;241m=\u001b[39m path \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m _PACKAGED_DATASETS_MODULES\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;66;03m# Download and prepare data\u001b[39;00m\n\u001b[0;32m-> 2574\u001b[0m \u001b[43mbuilder_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2575\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2576\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2577\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2578\u001b[0m \u001b[43m \u001b[49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2579\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2580\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2581\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2583\u001b[0m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[1;32m 2584\u001b[0m keep_in_memory \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 2585\u001b[0m keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size)\n\u001b[1;32m 2586\u001b[0m )\n",
101
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/builder.py:1005\u001b[0m, in \u001b[0;36mDatasetBuilder.download_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 1003\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1004\u001b[0m prepare_split_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum_proc\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m num_proc\n\u001b[0;32m-> 1005\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1006\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1007\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1008\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1009\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_and_prepare_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1010\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1011\u001b[0m \u001b[38;5;66;03m# Sync info\u001b[39;00m\n\u001b[1;32m 1012\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m(split\u001b[38;5;241m.\u001b[39mnum_bytes \u001b[38;5;28;01mfor\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39msplits\u001b[38;5;241m.\u001b[39mvalues())\n",
102
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/builder.py:1767\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_splits_kwargs)\u001b[0m\n\u001b[1;32m 1766\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_download_and_prepare\u001b[39m(\u001b[38;5;28mself\u001b[39m, dl_manager, verification_mode, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mprepare_splits_kwargs):\n\u001b[0;32m-> 1767\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1768\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1769\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1770\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck_duplicate_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBASIC_CHECKS\u001b[49m\n\u001b[1;32m 1771\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mALL_CHECKS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1772\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_splits_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1773\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
103
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/builder.py:1078\u001b[0m, in \u001b[0;36mDatasetBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_split_kwargs)\u001b[0m\n\u001b[1;32m 1076\u001b[0m split_dict \u001b[38;5;241m=\u001b[39m SplitDict(dataset_name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset_name)\n\u001b[1;32m 1077\u001b[0m split_generators_kwargs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_split_generators_kwargs(prepare_split_kwargs)\n\u001b[0;32m-> 1078\u001b[0m split_generators \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_split_generators\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msplit_generators_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1080\u001b[0m \u001b[38;5;66;03m# Checksums verification\u001b[39;00m\n\u001b[1;32m 1081\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m verification_mode \u001b[38;5;241m==\u001b[39m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS \u001b[38;5;129;01mand\u001b[39;00m dl_manager\u001b[38;5;241m.\u001b[39mrecord_checksums:\n",
104
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py:47\u001b[0m, in \u001b[0;36mWebDataset._split_generators\u001b[0;34m(self, dl_manager)\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mdata_files:\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAt least one data file must be specified, but got data_files=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mdata_files\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 47\u001b[0m data_files \u001b[38;5;241m=\u001b[39m \u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 48\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data_files, (\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mlist\u001b[39m, \u001b[38;5;28mtuple\u001b[39m)):\n\u001b[1;32m 49\u001b[0m tar_paths \u001b[38;5;241m=\u001b[39m data_files\n",
105
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/download/download_manager.py:434\u001b[0m, in \u001b[0;36mDownloadManager.download\u001b[0;34m(self, url_or_urls)\u001b[0m\n\u001b[1;32m 432\u001b[0m start_time \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow()\n\u001b[1;32m 433\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m stack_multiprocessing_download_progress_bars():\n\u001b[0;32m--> 434\u001b[0m downloaded_path_or_paths \u001b[38;5;241m=\u001b[39m \u001b[43mmap_nested\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 435\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_func\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 436\u001b[0m \u001b[43m \u001b[49m\u001b[43murl_or_urls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 437\u001b[0m \u001b[43m \u001b[49m\u001b[43mmap_tuple\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 438\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 439\u001b[0m \u001b[43m \u001b[49m\u001b[43mdesc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mDownloading data files\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 440\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 441\u001b[0m duration \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mnow() \u001b[38;5;241m-\u001b[39m start_time\n\u001b[1;32m 442\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDownloading took \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mduration\u001b[38;5;241m.\u001b[39mtotal_seconds()\u001b[38;5;250m \u001b[39m\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m/\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;241m60\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m min\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
106
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/py_utils.py:466\u001b[0m, in \u001b[0;36mmap_nested\u001b[0;34m(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, types, disable_tqdm, desc)\u001b[0m\n\u001b[1;32m 464\u001b[0m num_proc \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m(\u001b[38;5;28misinstance\u001b[39m(v, types) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(v) \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mlen\u001b[39m(iterable) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m iterable):\n\u001b[0;32m--> 466\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 467\u001b[0m map_nested(\n\u001b[1;32m 468\u001b[0m function\u001b[38;5;241m=\u001b[39mfunction,\n\u001b[1;32m 469\u001b[0m data_struct\u001b[38;5;241m=\u001b[39mobj,\n\u001b[1;32m 470\u001b[0m num_proc\u001b[38;5;241m=\u001b[39mnum_proc,\n\u001b[1;32m 471\u001b[0m parallel_min_length\u001b[38;5;241m=\u001b[39mparallel_min_length,\n\u001b[1;32m 472\u001b[0m types\u001b[38;5;241m=\u001b[39mtypes,\n\u001b[1;32m 473\u001b[0m )\n\u001b[1;32m 474\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m iterable\n\u001b[1;32m 475\u001b[0m ]\n\u001b[1;32m 476\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m num_proc \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m num_proc \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(iterable) \u001b[38;5;241m<\u001b[39m parallel_min_length:\n\u001b[1;32m 477\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 478\u001b[0m _single_map_nested((function, obj, types, \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 479\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m hf_tqdm(iterable, disable\u001b[38;5;241m=\u001b[39mdisable_tqdm, desc\u001b[38;5;241m=\u001b[39mdesc)\n\u001b[1;32m 480\u001b[0m ]\n",
107
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/py_utils.py:467\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 464\u001b[0m num_proc \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28many\u001b[39m(\u001b[38;5;28misinstance\u001b[39m(v, types) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(v) \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mlen\u001b[39m(iterable) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m iterable):\n\u001b[1;32m 466\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m--> 467\u001b[0m \u001b[43mmap_nested\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 468\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunction\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 469\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_struct\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 470\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 471\u001b[0m \u001b[43m \u001b[49m\u001b[43mparallel_min_length\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparallel_min_length\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 472\u001b[0m \u001b[43m \u001b[49m\u001b[43mtypes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtypes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 473\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 474\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m iterable\n\u001b[1;32m 475\u001b[0m ]\n\u001b[1;32m 476\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m num_proc \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m num_proc \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(iterable) \u001b[38;5;241m<\u001b[39m parallel_min_length:\n\u001b[1;32m 477\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 478\u001b[0m _single_map_nested((function, obj, types, \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 479\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m hf_tqdm(iterable, disable\u001b[38;5;241m=\u001b[39mdisable_tqdm, desc\u001b[38;5;241m=\u001b[39mdesc)\n\u001b[1;32m 480\u001b[0m ]\n",
108
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/py_utils.py:477\u001b[0m, in \u001b[0;36mmap_nested\u001b[0;34m(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, types, disable_tqdm, desc)\u001b[0m\n\u001b[1;32m 466\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 467\u001b[0m map_nested(\n\u001b[1;32m 468\u001b[0m function\u001b[38;5;241m=\u001b[39mfunction,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 474\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m iterable\n\u001b[1;32m 475\u001b[0m ]\n\u001b[1;32m 476\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m num_proc \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m num_proc \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(iterable) \u001b[38;5;241m<\u001b[39m parallel_min_length:\n\u001b[0;32m--> 477\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 478\u001b[0m _single_map_nested((function, obj, types, \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;28;01mTrue\u001b[39;00m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[1;32m 479\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m hf_tqdm(iterable, disable\u001b[38;5;241m=\u001b[39mdisable_tqdm, desc\u001b[38;5;241m=\u001b[39mdesc)\n\u001b[1;32m 480\u001b[0m ]\n\u001b[1;32m 481\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 482\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m warnings\u001b[38;5;241m.\u001b[39mcatch_warnings():\n",
109
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/py_utils.py:478\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 466\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 467\u001b[0m map_nested(\n\u001b[1;32m 468\u001b[0m function\u001b[38;5;241m=\u001b[39mfunction,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 474\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m iterable\n\u001b[1;32m 475\u001b[0m ]\n\u001b[1;32m 476\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m num_proc \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m num_proc \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(iterable) \u001b[38;5;241m<\u001b[39m parallel_min_length:\n\u001b[1;32m 477\u001b[0m mapped \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m--> 478\u001b[0m \u001b[43m_single_map_nested\u001b[49m\u001b[43m(\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtypes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 479\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m hf_tqdm(iterable, disable\u001b[38;5;241m=\u001b[39mdisable_tqdm, desc\u001b[38;5;241m=\u001b[39mdesc)\n\u001b[1;32m 480\u001b[0m ]\n\u001b[1;32m 481\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 482\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m warnings\u001b[38;5;241m.\u001b[39mcatch_warnings():\n",
110
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/py_utils.py:370\u001b[0m, in \u001b[0;36m_single_map_nested\u001b[0;34m(args)\u001b[0m\n\u001b[1;32m 368\u001b[0m \u001b[38;5;66;03m# Singleton first to spare some computation\u001b[39;00m\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data_struct, \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data_struct, types):\n\u001b[0;32m--> 370\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_struct\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[38;5;66;03m# Reduce logging to keep things readable in multiprocessing with tqdm\u001b[39;00m\n\u001b[1;32m 373\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m rank \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m logging\u001b[38;5;241m.\u001b[39mget_verbosity() \u001b[38;5;241m<\u001b[39m logging\u001b[38;5;241m.\u001b[39mWARNING:\n",
111
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/download/download_manager.py:459\u001b[0m, in \u001b[0;36mDownloadManager._download\u001b[0;34m(self, url_or_filename, download_config)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_relative_path(url_or_filename):\n\u001b[1;32m 457\u001b[0m \u001b[38;5;66;03m# append the relative path to the base_path\u001b[39;00m\n\u001b[1;32m 458\u001b[0m url_or_filename \u001b[38;5;241m=\u001b[39m url_or_path_join(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_base_path, url_or_filename)\n\u001b[0;32m--> 459\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[43mcached_path\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl_or_filename\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 460\u001b[0m out \u001b[38;5;241m=\u001b[39m tracked_str(out)\n\u001b[1;32m 461\u001b[0m out\u001b[38;5;241m.\u001b[39mset_origin(url_or_filename)\n",
112
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/file_utils.py:190\u001b[0m, in \u001b[0;36mcached_path\u001b[0;34m(url_or_filename, download_config, **download_kwargs)\u001b[0m\n\u001b[1;32m 186\u001b[0m url_or_filename \u001b[38;5;241m=\u001b[39m strip_protocol(url_or_filename)\n\u001b[1;32m 188\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_remote_url(url_or_filename):\n\u001b[1;32m 189\u001b[0m \u001b[38;5;66;03m# URL, so get it from the cache (downloading if necessary)\u001b[39;00m\n\u001b[0;32m--> 190\u001b[0m output_path \u001b[38;5;241m=\u001b[39m \u001b[43mget_from_cache\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 191\u001b[0m \u001b[43m \u001b[49m\u001b[43murl_or_filename\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 192\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 193\u001b[0m \u001b[43m \u001b[49m\u001b[43mforce_download\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mforce_download\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[43m \u001b[49m\u001b[43mproxies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mproxies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[43m \u001b[49m\u001b[43mresume_download\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresume_download\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 196\u001b[0m \u001b[43m \u001b[49m\u001b[43muser_agent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43muser_agent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_files_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlocal_files_only\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_etag\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43muse_etag\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 199\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_url_params\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mignore_url_params\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 202\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 203\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_desc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_desc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 204\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 205\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mexists(url_or_filename):\n\u001b[1;32m 206\u001b[0m \u001b[38;5;66;03m# File, and it exists.\u001b[39;00m\n\u001b[1;32m 207\u001b[0m output_path \u001b[38;5;241m=\u001b[39m url_or_filename\n",
113
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/file_utils.py:632\u001b[0m, in \u001b[0;36mget_from_cache\u001b[0;34m(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, token, use_auth_token, ignore_url_params, storage_options, download_desc)\u001b[0m\n\u001b[1;32m 630\u001b[0m ftp_get(url, temp_file)\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m scheme \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m (\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttp\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttps\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m--> 632\u001b[0m \u001b[43mfsspec_get\u001b[49m\u001b[43m(\u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemp_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdesc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_desc\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 633\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 634\u001b[0m http_get(\n\u001b[1;32m 635\u001b[0m url,\n\u001b[1;32m 636\u001b[0m temp_file\u001b[38;5;241m=\u001b[39mtemp_file,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 642\u001b[0m desc\u001b[38;5;241m=\u001b[39mdownload_desc,\n\u001b[1;32m 643\u001b[0m )\n",
114
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/datasets/utils/file_utils.py:352\u001b[0m, in \u001b[0;36mfsspec_get\u001b[0;34m(url, temp_file, storage_options, desc)\u001b[0m\n\u001b[1;32m 340\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGET can be called with at most one path but was called with \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpaths\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 341\u001b[0m callback \u001b[38;5;241m=\u001b[39m TqdmCallback(\n\u001b[1;32m 342\u001b[0m tqdm_kwargs\u001b[38;5;241m=\u001b[39m{\n\u001b[1;32m 343\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdesc\u001b[39m\u001b[38;5;124m\"\u001b[39m: desc \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDownloading\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 350\u001b[0m }\n\u001b[1;32m 351\u001b[0m )\n\u001b[0;32m--> 352\u001b[0m \u001b[43mfs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpaths\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemp_file\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallback\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallback\u001b[49m\u001b[43m)\u001b[49m\n",
115
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/fsspec/spec.py:914\u001b[0m, in \u001b[0;36mAbstractFileSystem.get_file\u001b[0;34m(self, rpath, lpath, callback, outfile, **kwargs)\u001b[0m\n\u001b[1;32m 912\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 913\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m data:\n\u001b[0;32m--> 914\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mf1\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mblocksize\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 915\u001b[0m segment_len \u001b[38;5;241m=\u001b[39m outfile\u001b[38;5;241m.\u001b[39mwrite(data)\n\u001b[1;32m 916\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m segment_len \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
116
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/fsspec/spec.py:1856\u001b[0m, in \u001b[0;36mAbstractBufferedFile.read\u001b[0;34m(self, length)\u001b[0m\n\u001b[1;32m 1853\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m length \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1854\u001b[0m \u001b[38;5;66;03m# don't even bother calling fetch\u001b[39;00m\n\u001b[1;32m 1855\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1856\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcache\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fetch\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloc\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mlength\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1857\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloc \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(out)\n\u001b[1;32m 1858\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n",
117
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/fsspec/caching.py:189\u001b[0m, in \u001b[0;36mReadAheadCache._fetch\u001b[0;34m(self, start, end)\u001b[0m\n\u001b[1;32m 187\u001b[0m part \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 188\u001b[0m end \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmin\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msize, end \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mblocksize)\n\u001b[0;32m--> 189\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcache \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfetcher\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# new block replaces old\u001b[39;00m\n\u001b[1;32m 190\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstart \u001b[38;5;241m=\u001b[39m start\n\u001b[1;32m 191\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mend \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstart \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcache)\n",
118
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py:625\u001b[0m, in \u001b[0;36mHfFileSystemFile._fetch_range\u001b[0;34m(self, start, end)\u001b[0m\n\u001b[1;32m 614\u001b[0m headers \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 615\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrange\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbytes=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mstart\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m-\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mend\u001b[38;5;250m \u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;241m1\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 616\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfs\u001b[38;5;241m.\u001b[39m_api\u001b[38;5;241m.\u001b[39m_build_hf_headers(),\n\u001b[1;32m 617\u001b[0m }\n\u001b[1;32m 618\u001b[0m url \u001b[38;5;241m=\u001b[39m hf_hub_url(\n\u001b[1;32m 619\u001b[0m repo_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresolved_path\u001b[38;5;241m.\u001b[39mrepo_id,\n\u001b[1;32m 620\u001b[0m revision\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresolved_path\u001b[38;5;241m.\u001b[39mrevision,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 623\u001b[0m endpoint\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfs\u001b[38;5;241m.\u001b[39mendpoint,\n\u001b[1;32m 624\u001b[0m )\n\u001b[0;32m--> 625\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43mhttp_backoff\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mGET\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 626\u001b[0m hf_raise_for_status(r)\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m r\u001b[38;5;241m.\u001b[39mcontent\n",
119
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/huggingface_hub/utils/_http.py:281\u001b[0m, in \u001b[0;36mhttp_backoff\u001b[0;34m(method, url, max_retries, base_wait_time, max_wait_time, retry_on_exceptions, retry_on_status_codes, **kwargs)\u001b[0m\n\u001b[1;32m 278\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mseek(io_obj_initial_pos)\n\u001b[1;32m 280\u001b[0m \u001b[38;5;66;03m# Perform request and return if status_code is not in the retry list.\u001b[39;00m\n\u001b[0;32m--> 281\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43msession\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 282\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m response\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m retry_on_status_codes:\n\u001b[1;32m 283\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m response\n",
120
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 584\u001b[0m send_kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 585\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtimeout\u001b[39m\u001b[38;5;124m\"\u001b[39m: timeout,\n\u001b[1;32m 586\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m: allow_redirects,\n\u001b[1;32m 587\u001b[0m }\n\u001b[1;32m 588\u001b[0m send_kwargs\u001b[38;5;241m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
121
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/requests/sessions.py:725\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 722\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m allow_redirects:\n\u001b[1;32m 723\u001b[0m \u001b[38;5;66;03m# Redirect resolving generator.\u001b[39;00m\n\u001b[1;32m 724\u001b[0m gen \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresolve_redirects(r, request, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m--> 725\u001b[0m history \u001b[38;5;241m=\u001b[39m [resp \u001b[38;5;28;01mfor\u001b[39;00m resp \u001b[38;5;129;01min\u001b[39;00m gen]\n\u001b[1;32m 726\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 727\u001b[0m history \u001b[38;5;241m=\u001b[39m []\n",
122
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/requests/sessions.py:725\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 722\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m allow_redirects:\n\u001b[1;32m 723\u001b[0m \u001b[38;5;66;03m# Redirect resolving generator.\u001b[39;00m\n\u001b[1;32m 724\u001b[0m gen \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresolve_redirects(r, request, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m--> 725\u001b[0m history \u001b[38;5;241m=\u001b[39m [resp \u001b[38;5;28;01mfor\u001b[39;00m resp \u001b[38;5;129;01min\u001b[39;00m gen]\n\u001b[1;32m 726\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 727\u001b[0m history \u001b[38;5;241m=\u001b[39m []\n",
123
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/requests/sessions.py:266\u001b[0m, in \u001b[0;36mSessionRedirectMixin.resolve_redirects\u001b[0;34m(self, resp, req, stream, timeout, verify, cert, proxies, yield_requests, **adapter_kwargs)\u001b[0m\n\u001b[1;32m 263\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m req\n\u001b[1;32m 264\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 266\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 267\u001b[0m \u001b[43m \u001b[49m\u001b[43mreq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 268\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 269\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 270\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 271\u001b[0m \u001b[43m \u001b[49m\u001b[43mcert\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcert\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 272\u001b[0m \u001b[43m \u001b[49m\u001b[43mproxies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxies\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 273\u001b[0m \u001b[43m \u001b[49m\u001b[43mallow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 274\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43madapter_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 275\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 277\u001b[0m extract_cookies_to_jar(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcookies, prepared_request, resp\u001b[38;5;241m.\u001b[39mraw)\n\u001b[1;32m 279\u001b[0m \u001b[38;5;66;03m# extract redirect url, if any, for the next loop\u001b[39;00m\n",
124
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/requests/sessions.py:747\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 744\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m 746\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m stream:\n\u001b[0;32m--> 747\u001b[0m \u001b[43mr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcontent\u001b[49m\n\u001b[1;32m 749\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m r\n",
125
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/requests/models.py:899\u001b[0m, in \u001b[0;36mResponse.content\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_content \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 898\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 899\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_content \u001b[38;5;241m=\u001b[39m \u001b[38;5;124;43mb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miter_content\u001b[49m\u001b[43m(\u001b[49m\u001b[43mCONTENT_CHUNK_SIZE\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 901\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_content_consumed \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 902\u001b[0m \u001b[38;5;66;03m# don't need to release the connection; that's been handled by urllib3\u001b[39;00m\n\u001b[1;32m 903\u001b[0m \u001b[38;5;66;03m# since we exhausted the data.\u001b[39;00m\n",
126
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/requests/models.py:816\u001b[0m, in \u001b[0;36mResponse.iter_content.<locals>.generate\u001b[0;34m()\u001b[0m\n\u001b[1;32m 814\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mraw, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[1;32m 815\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 816\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mraw\u001b[38;5;241m.\u001b[39mstream(chunk_size, decode_content\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[1;32m 817\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ProtocolError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 818\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ChunkedEncodingError(e)\n",
127
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/urllib3/response.py:628\u001b[0m, in \u001b[0;36mHTTPResponse.stream\u001b[0;34m(self, amt, decode_content)\u001b[0m\n\u001b[1;32m 626\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_fp_closed(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fp):\n\u001b[0;32m--> 628\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mamt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mamt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdecode_content\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m data:\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m data\n",
128
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/urllib3/response.py:567\u001b[0m, in \u001b[0;36mHTTPResponse.read\u001b[0;34m(self, amt, decode_content, cache_content)\u001b[0m\n\u001b[1;32m 564\u001b[0m fp_closed \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fp, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mclosed\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 566\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_error_catcher():\n\u001b[0;32m--> 567\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fp_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mamt\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m fp_closed \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 568\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m amt \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 569\u001b[0m flush_decoder \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
129
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/site-packages/urllib3/response.py:533\u001b[0m, in \u001b[0;36mHTTPResponse._fp_read\u001b[0;34m(self, amt)\u001b[0m\n\u001b[1;32m 530\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m buffer\u001b[38;5;241m.\u001b[39mgetvalue()\n\u001b[1;32m 531\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 532\u001b[0m \u001b[38;5;66;03m# StringIO doesn't like amt=None\u001b[39;00m\n\u001b[0;32m--> 533\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mamt\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mif\u001b[39;00m amt \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_fp\u001b[38;5;241m.\u001b[39mread()\n",
130
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/http/client.py:463\u001b[0m, in \u001b[0;36mHTTPResponse.read\u001b[0;34m(self, amt)\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m amt \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 461\u001b[0m \u001b[38;5;66;03m# Amount is given, implement using readinto\u001b[39;00m\n\u001b[1;32m 462\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mbytearray\u001b[39m(amt)\n\u001b[0;32m--> 463\u001b[0m n \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadinto\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 464\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mmemoryview\u001b[39m(b)[:n]\u001b[38;5;241m.\u001b[39mtobytes()\n\u001b[1;32m 465\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 466\u001b[0m \u001b[38;5;66;03m# Amount is not given (unbounded read) so we must check self.length\u001b[39;00m\n\u001b[1;32m 467\u001b[0m \u001b[38;5;66;03m# and self.chunked\u001b[39;00m\n",
131
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/http/client.py:507\u001b[0m, in \u001b[0;36mHTTPResponse.readinto\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 502\u001b[0m b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmemoryview\u001b[39m(b)[\u001b[38;5;241m0\u001b[39m:\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlength]\n\u001b[1;32m 504\u001b[0m \u001b[38;5;66;03m# we do not use _safe_read() here because this may be a .will_close\u001b[39;00m\n\u001b[1;32m 505\u001b[0m \u001b[38;5;66;03m# connection, and the user is reading more bytes than will be provided\u001b[39;00m\n\u001b[1;32m 506\u001b[0m \u001b[38;5;66;03m# (for example, reading in 1k chunks)\u001b[39;00m\n\u001b[0;32m--> 507\u001b[0m n \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadinto\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 508\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m n \u001b[38;5;129;01mand\u001b[39;00m b:\n\u001b[1;32m 509\u001b[0m \u001b[38;5;66;03m# Ideally, we would raise IncompleteRead if the content-length\u001b[39;00m\n\u001b[1;32m 510\u001b[0m \u001b[38;5;66;03m# wasn't satisfied, but it might break compatibility.\u001b[39;00m\n\u001b[1;32m 511\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_close_conn()\n",
132
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/socket.py:704\u001b[0m, in \u001b[0;36mSocketIO.readinto\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 702\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 703\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 704\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecv_into\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 705\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m timeout:\n\u001b[1;32m 706\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_timeout_occurred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
133
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/ssl.py:1242\u001b[0m, in \u001b[0;36mSSLSocket.recv_into\u001b[0;34m(self, buffer, nbytes, flags)\u001b[0m\n\u001b[1;32m 1238\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m flags \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1239\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 1240\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnon-zero flags not allowed in calls to recv_into() on \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\n\u001b[1;32m 1241\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m)\n\u001b[0;32m-> 1242\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnbytes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1243\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1244\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mrecv_into(buffer, nbytes, flags)\n",
134
+ "File \u001b[0;32m~/miniconda3/envs/pytorch/lib/python3.9/ssl.py:1100\u001b[0m, in \u001b[0;36mSSLSocket.read\u001b[0;34m(self, len, buffer)\u001b[0m\n\u001b[1;32m 1098\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1099\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m buffer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 1100\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sslobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1101\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1102\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sslobj\u001b[38;5;241m.\u001b[39mread(\u001b[38;5;28mlen\u001b[39m)\n",
135
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
136
+ ]
137
+ }
138
+ ],
139
+ "source": [
140
+ "from datasets import load_dataset\n",
141
+ "ds = load_dataset('test-org-usm3d/usm-training-data')"
142
+ ]
143
+ }
144
+ ],
145
+ "metadata": {
146
+ "kernelspec": {
147
+ "display_name": "Python 3 (ipykernel)",
148
+ "language": "python",
149
+ "name": "python3"
150
+ },
151
+ "language_info": {
152
+ "codemirror_mode": {
153
+ "name": "ipython",
154
+ "version": 3
155
+ },
156
+ "file_extension": ".py",
157
+ "mimetype": "text/x-python",
158
+ "name": "python",
159
+ "nbconvert_exporter": "python",
160
+ "pygments_lexer": "ipython3",
161
+ "version": "3.9.16"
162
+ }
163
+ },
164
+ "nbformat": 4,
165
+ "nbformat_minor": 5
166
+ }
notebooks/.ipynb_checkpoints/example_on_training-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/example_on_training.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
read_write_colmap.py ADDED
@@ -0,0 +1,489 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified to read from bytes-like object by Dmytro Mishkin.
2
+ # The original license is below:
3
+ # Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
4
+ # All rights reserved.
5
+ #
6
+ # Redistribution and use in source and binary forms, with or without
7
+ # modification, are permitted provided that the following conditions are met:
8
+ #
9
+ # * Redistributions of source code must retain the above copyright
10
+ # notice, this list of conditions and the following disclaimer.
11
+ #
12
+ # * Redistributions in binary form must reproduce the above copyright
13
+ # notice, this list of conditions and the following disclaimer in the
14
+ # documentation and/or other materials provided with the distribution.
15
+ #
16
+ # * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
17
+ # its contributors may be used to endorse or promote products derived
18
+ # from this software without specific prior written permission.
19
+ #
20
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23
+ # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
24
+ # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25
+ # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26
+ # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27
+ # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28
+ # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29
+ # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30
+ # POSSIBILITY OF SUCH DAMAGE.
31
+ #
32
+ # Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
33
+
34
+ import os
35
+ import collections
36
+ import numpy as np
37
+ import struct
38
+ import argparse
39
+
40
+
41
+ CameraModel = collections.namedtuple(
42
+ "CameraModel", ["model_id", "model_name", "num_params"])
43
+ Camera = collections.namedtuple(
44
+ "Camera", ["id", "model", "width", "height", "params"])
45
+ BaseImage = collections.namedtuple(
46
+ "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
47
+ Point3D = collections.namedtuple(
48
+ "Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])
49
+
50
+
51
+ class Image(BaseImage):
52
+ def qvec2rotmat(self):
53
+ return qvec2rotmat(self.qvec)
54
+
55
+
56
+ CAMERA_MODELS = {
57
+ CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
58
+ CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
59
+ CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
60
+ CameraModel(model_id=3, model_name="RADIAL", num_params=5),
61
+ CameraModel(model_id=4, model_name="OPENCV", num_params=8),
62
+ CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
63
+ CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
64
+ CameraModel(model_id=7, model_name="FOV", num_params=5),
65
+ CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
66
+ CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
67
+ CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
68
+ }
69
+ CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model)
70
+ for camera_model in CAMERA_MODELS])
71
+ CAMERA_MODEL_NAMES = dict([(camera_model.model_name, camera_model)
72
+ for camera_model in CAMERA_MODELS])
73
+
74
+
75
+ def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
76
+ """Read and unpack the next bytes from a binary file.
77
+ :param fid:
78
+ :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
79
+ :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
80
+ :param endian_character: Any of {@, =, <, >, !}
81
+ :return: Tuple of read and unpacked values.
82
+ """
83
+ data = fid.read(num_bytes)
84
+ return struct.unpack(endian_character + format_char_sequence, data)
85
+
86
+
87
+ def write_next_bytes(fid, data, format_char_sequence, endian_character="<"):
88
+ """pack and write to a binary file.
89
+ :param fid:
90
+ :param data: data to send, if multiple elements are sent at the same time,
91
+ they should be encapsuled either in a list or a tuple
92
+ :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
93
+ should be the same length as the data list or tuple
94
+ :param endian_character: Any of {@, =, <, >, !}
95
+ """
96
+ if isinstance(data, (list, tuple)):
97
+ bytes = struct.pack(endian_character + format_char_sequence, *data)
98
+ else:
99
+ bytes = struct.pack(endian_character + format_char_sequence, data)
100
+ fid.write(bytes)
101
+
102
+
103
+ def read_cameras_text(path):
104
+ """
105
+ see: src/base/reconstruction.cc
106
+ void Reconstruction::WriteCamerasText(const std::string& path)
107
+ void Reconstruction::ReadCamerasText(const std::string& path)
108
+ """
109
+ cameras = {}
110
+ with open(path, "r") as fid:
111
+ while True:
112
+ line = fid.readline()
113
+ if not line:
114
+ break
115
+ line = line.strip()
116
+ if len(line) > 0 and line[0] != "#":
117
+ elems = line.split()
118
+ camera_id = int(elems[0])
119
+ model = elems[1]
120
+ width = int(elems[2])
121
+ height = int(elems[3])
122
+ params = np.array(tuple(map(float, elems[4:])))
123
+ cameras[camera_id] = Camera(id=camera_id, model=model,
124
+ width=width, height=height,
125
+ params=params)
126
+ return cameras
127
+
128
+
129
+ def read_cameras_binary(path_to_model_file=None, fid=None):
130
+ """
131
+ see: src/base/reconstruction.cc
132
+ void Reconstruction::WriteCamerasBinary(const std::string& path)
133
+ void Reconstruction::ReadCamerasBinary(const std::string& path)
134
+ """
135
+ cameras = {}
136
+ if fid is None:
137
+ fid = open(path_to_model_file, "rb")
138
+ num_cameras = read_next_bytes(fid, 8, "Q")[0]
139
+ for _ in range(num_cameras):
140
+ camera_properties = read_next_bytes(
141
+ fid, num_bytes=24, format_char_sequence="iiQQ")
142
+ camera_id = camera_properties[0]
143
+ model_id = camera_properties[1]
144
+ model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
145
+ width = camera_properties[2]
146
+ height = camera_properties[3]
147
+ num_params = CAMERA_MODEL_IDS[model_id].num_params
148
+ params = read_next_bytes(fid, num_bytes=8*num_params,
149
+ format_char_sequence="d"*num_params)
150
+ cameras[camera_id] = Camera(id=camera_id,
151
+ model=model_name,
152
+ width=width,
153
+ height=height,
154
+ params=np.array(params))
155
+ assert len(cameras) == num_cameras
156
+ if path_to_model_file is not None:
157
+ fid.close()
158
+ return cameras
159
+
160
+
161
+ def write_cameras_text(cameras, path):
162
+ """
163
+ see: src/base/reconstruction.cc
164
+ void Reconstruction::WriteCamerasText(const std::string& path)
165
+ void Reconstruction::ReadCamerasText(const std::string& path)
166
+ """
167
+ HEADER = "# Camera list with one line of data per camera:\n" + \
168
+ "# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n" + \
169
+ "# Number of cameras: {}\n".format(len(cameras))
170
+ with open(path, "w") as fid:
171
+ fid.write(HEADER)
172
+ for _, cam in cameras.items():
173
+ to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params]
174
+ line = " ".join([str(elem) for elem in to_write])
175
+ fid.write(line + "\n")
176
+
177
+
178
+ def write_cameras_binary(cameras, path_to_model_file):
179
+ """
180
+ see: src/base/reconstruction.cc
181
+ void Reconstruction::WriteCamerasBinary(const std::string& path)
182
+ void Reconstruction::ReadCamerasBinary(const std::string& path)
183
+ """
184
+ with open(path_to_model_file, "wb") as fid:
185
+ write_next_bytes(fid, len(cameras), "Q")
186
+ for _, cam in cameras.items():
187
+ model_id = CAMERA_MODEL_NAMES[cam.model].model_id
188
+ camera_properties = [cam.id,
189
+ model_id,
190
+ cam.width,
191
+ cam.height]
192
+ write_next_bytes(fid, camera_properties, "iiQQ")
193
+ for p in cam.params:
194
+ write_next_bytes(fid, float(p), "d")
195
+ return cameras
196
+
197
+
198
+ def read_images_text(path):
199
+ """
200
+ see: src/base/reconstruction.cc
201
+ void Reconstruction::ReadImagesText(const std::string& path)
202
+ void Reconstruction::WriteImagesText(const std::string& path)
203
+ """
204
+ images = {}
205
+ with open(path, "r") as fid:
206
+ while True:
207
+ line = fid.readline()
208
+ if not line:
209
+ break
210
+ line = line.strip()
211
+ if len(line) > 0 and line[0] != "#":
212
+ elems = line.split()
213
+ image_id = int(elems[0])
214
+ qvec = np.array(tuple(map(float, elems[1:5])))
215
+ tvec = np.array(tuple(map(float, elems[5:8])))
216
+ camera_id = int(elems[8])
217
+ image_name = elems[9]
218
+ elems = fid.readline().split()
219
+ xys = np.column_stack([tuple(map(float, elems[0::3])),
220
+ tuple(map(float, elems[1::3]))])
221
+ point3D_ids = np.array(tuple(map(int, elems[2::3])))
222
+ images[image_id] = Image(
223
+ id=image_id, qvec=qvec, tvec=tvec,
224
+ camera_id=camera_id, name=image_name,
225
+ xys=xys, point3D_ids=point3D_ids)
226
+ return images
227
+
228
+
229
+ def read_images_binary(path_to_model_file=None, fid=None):
230
+ """
231
+ see: src/base/reconstruction.cc
232
+ void Reconstruction::ReadImagesBinary(const std::string& path)
233
+ void Reconstruction::WriteImagesBinary(const std::string& path)
234
+ """
235
+ images = {}
236
+ if fid is None:
237
+ fid = open(path_to_model_file, "rb")
238
+ num_reg_images = read_next_bytes(fid, 8, "Q")[0]
239
+ for _ in range(num_reg_images):
240
+ binary_image_properties = read_next_bytes(
241
+ fid, num_bytes=64, format_char_sequence="idddddddi")
242
+ image_id = binary_image_properties[0]
243
+ qvec = np.array(binary_image_properties[1:5])
244
+ tvec = np.array(binary_image_properties[5:8])
245
+ camera_id = binary_image_properties[8]
246
+ image_name = ""
247
+ current_char = read_next_bytes(fid, 1, "c")[0]
248
+ while current_char != b"\x00": # look for the ASCII 0 entry
249
+ image_name += current_char.decode("utf-8")
250
+ current_char = read_next_bytes(fid, 1, "c")[0]
251
+ num_points2D = read_next_bytes(fid, num_bytes=8,
252
+ format_char_sequence="Q")[0]
253
+ x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D,
254
+ format_char_sequence="ddq"*num_points2D)
255
+ xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])),
256
+ tuple(map(float, x_y_id_s[1::3]))])
257
+ point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
258
+ images[image_id] = Image(
259
+ id=image_id, qvec=qvec, tvec=tvec,
260
+ camera_id=camera_id, name=image_name,
261
+ xys=xys, point3D_ids=point3D_ids)
262
+ if path_to_model_file is not None:
263
+ fid.close()
264
+ return images
265
+
266
+
267
+ def write_images_text(images, path):
268
+ """
269
+ see: src/base/reconstruction.cc
270
+ void Reconstruction::ReadImagesText(const std::string& path)
271
+ void Reconstruction::WriteImagesText(const std::string& path)
272
+ """
273
+ if len(images) == 0:
274
+ mean_observations = 0
275
+ else:
276
+ mean_observations = sum((len(img.point3D_ids) for _, img in images.items()))/len(images)
277
+ HEADER = "# Image list with two lines of data per image:\n" + \
278
+ "# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n" + \
279
+ "# POINTS2D[] as (X, Y, POINT3D_ID)\n" + \
280
+ "# Number of images: {}, mean observations per image: {}\n".format(len(images), mean_observations)
281
+
282
+ with open(path, "w") as fid:
283
+ fid.write(HEADER)
284
+ for _, img in images.items():
285
+ image_header = [img.id, *img.qvec, *img.tvec, img.camera_id, img.name]
286
+ first_line = " ".join(map(str, image_header))
287
+ fid.write(first_line + "\n")
288
+
289
+ points_strings = []
290
+ for xy, point3D_id in zip(img.xys, img.point3D_ids):
291
+ points_strings.append(" ".join(map(str, [*xy, point3D_id])))
292
+ fid.write(" ".join(points_strings) + "\n")
293
+
294
+
295
+ def write_images_binary(images, path_to_model_file):
296
+ """
297
+ see: src/base/reconstruction.cc
298
+ void Reconstruction::ReadImagesBinary(const std::string& path)
299
+ void Reconstruction::WriteImagesBinary(const std::string& path)
300
+ """
301
+ with open(path_to_model_file, "wb") as fid:
302
+ write_next_bytes(fid, len(images), "Q")
303
+ for _, img in images.items():
304
+ write_next_bytes(fid, img.id, "i")
305
+ write_next_bytes(fid, img.qvec.tolist(), "dddd")
306
+ write_next_bytes(fid, img.tvec.tolist(), "ddd")
307
+ write_next_bytes(fid, img.camera_id, "i")
308
+ for char in img.name:
309
+ write_next_bytes(fid, char.encode("utf-8"), "c")
310
+ write_next_bytes(fid, b"\x00", "c")
311
+ write_next_bytes(fid, len(img.point3D_ids), "Q")
312
+ for xy, p3d_id in zip(img.xys, img.point3D_ids):
313
+ write_next_bytes(fid, [*xy, p3d_id], "ddq")
314
+
315
+
316
+ def read_points3D_text(path):
317
+ """
318
+ see: src/base/reconstruction.cc
319
+ void Reconstruction::ReadPoints3DText(const std::string& path)
320
+ void Reconstruction::WritePoints3DText(const std::string& path)
321
+ """
322
+ points3D = {}
323
+ with open(path, "r") as fid:
324
+ while True:
325
+ line = fid.readline()
326
+ if not line:
327
+ break
328
+ line = line.strip()
329
+ if len(line) > 0 and line[0] != "#":
330
+ elems = line.split()
331
+ point3D_id = int(elems[0])
332
+ xyz = np.array(tuple(map(float, elems[1:4])))
333
+ rgb = np.array(tuple(map(int, elems[4:7])))
334
+ error = float(elems[7])
335
+ image_ids = np.array(tuple(map(int, elems[8::2])))
336
+ point2D_idxs = np.array(tuple(map(int, elems[9::2])))
337
+ points3D[point3D_id] = Point3D(id=point3D_id, xyz=xyz, rgb=rgb,
338
+ error=error, image_ids=image_ids,
339
+ point2D_idxs=point2D_idxs)
340
+ return points3D
341
+
342
+
343
+ def read_points3D_binary(path_to_model_file=None, fid=None):
344
+ """
345
+ see: src/base/reconstruction.cc
346
+ void Reconstruction::ReadPoints3DBinary(const std::string& path)
347
+ void Reconstruction::WritePoints3DBinary(const std::string& path)
348
+ """
349
+ points3D = {}
350
+ if fid is None:
351
+ fid = open(path_to_model_file, "rb")
352
+ num_points = read_next_bytes(fid, 8, "Q")[0]
353
+ for _ in range(num_points):
354
+ binary_point_line_properties = read_next_bytes(
355
+ fid, num_bytes=43, format_char_sequence="QdddBBBd")
356
+ point3D_id = binary_point_line_properties[0]
357
+ xyz = np.array(binary_point_line_properties[1:4])
358
+ rgb = np.array(binary_point_line_properties[4:7])
359
+ error = np.array(binary_point_line_properties[7])
360
+ track_length = read_next_bytes(
361
+ fid, num_bytes=8, format_char_sequence="Q")[0]
362
+ track_elems = read_next_bytes(
363
+ fid, num_bytes=8*track_length,
364
+ format_char_sequence="ii"*track_length)
365
+ image_ids = np.array(tuple(map(int, track_elems[0::2])))
366
+ point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
367
+ points3D[point3D_id] = Point3D(
368
+ id=point3D_id, xyz=xyz, rgb=rgb,
369
+ error=error, image_ids=image_ids,
370
+ point2D_idxs=point2D_idxs)
371
+ if path_to_model_file is not None:
372
+ fid.close()
373
+ return points3D
374
+
375
+
376
+ def write_points3D_text(points3D, path):
377
+ """
378
+ see: src/base/reconstruction.cc
379
+ void Reconstruction::ReadPoints3DText(const std::string& path)
380
+ void Reconstruction::WritePoints3DText(const std::string& path)
381
+ """
382
+ if len(points3D) == 0:
383
+ mean_track_length = 0
384
+ else:
385
+ mean_track_length = sum((len(pt.image_ids) for _, pt in points3D.items()))/len(points3D)
386
+ HEADER = "# 3D point list with one line of data per point:\n" + \
387
+ "# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n" + \
388
+ "# Number of points: {}, mean track length: {}\n".format(len(points3D), mean_track_length)
389
+
390
+ with open(path, "w") as fid:
391
+ fid.write(HEADER)
392
+ for _, pt in points3D.items():
393
+ point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error]
394
+ fid.write(" ".join(map(str, point_header)) + " ")
395
+ track_strings = []
396
+ for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs):
397
+ track_strings.append(" ".join(map(str, [image_id, point2D])))
398
+ fid.write(" ".join(track_strings) + "\n")
399
+
400
+
401
+ def write_points3D_binary(points3D, path_to_model_file):
402
+ """
403
+ see: src/base/reconstruction.cc
404
+ void Reconstruction::ReadPoints3DBinary(const std::string& path)
405
+ void Reconstruction::WritePoints3DBinary(const std::string& path)
406
+ """
407
+ with open(path_to_model_file, "wb") as fid:
408
+ write_next_bytes(fid, len(points3D), "Q")
409
+ for _, pt in points3D.items():
410
+ write_next_bytes(fid, pt.id, "Q")
411
+ write_next_bytes(fid, pt.xyz.tolist(), "ddd")
412
+ write_next_bytes(fid, pt.rgb.tolist(), "BBB")
413
+ write_next_bytes(fid, pt.error, "d")
414
+ track_length = pt.image_ids.shape[0]
415
+ write_next_bytes(fid, track_length, "Q")
416
+ for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):
417
+ write_next_bytes(fid, [image_id, point2D_id], "ii")
418
+
419
+
420
+ def detect_model_format(path, ext):
421
+ if os.path.isfile(os.path.join(path, "cameras" + ext)) and \
422
+ os.path.isfile(os.path.join(path, "images" + ext)) and \
423
+ os.path.isfile(os.path.join(path, "points3D" + ext)):
424
+ print("Detected model format: '" + ext + "'")
425
+ return True
426
+
427
+ return False
428
+
429
+
430
+ def read_model(path, ext=""):
431
+ # try to detect the extension automatically
432
+ if ext == "":
433
+ if detect_model_format(path, ".bin"):
434
+ ext = ".bin"
435
+ elif detect_model_format(path, ".txt"):
436
+ ext = ".txt"
437
+ else:
438
+ print("Provide model format: '.bin' or '.txt'")
439
+ return
440
+
441
+ if ext == ".txt":
442
+ cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
443
+ images = read_images_text(os.path.join(path, "images" + ext))
444
+ points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
445
+ else:
446
+ cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
447
+ images = read_images_binary(os.path.join(path, "images" + ext))
448
+ points3D = read_points3D_binary(os.path.join(path, "points3D") + ext)
449
+ return cameras, images, points3D
450
+
451
+
452
+ def write_model(cameras, images, points3D, path, ext=".bin"):
453
+ if ext == ".txt":
454
+ write_cameras_text(cameras, os.path.join(path, "cameras" + ext))
455
+ write_images_text(images, os.path.join(path, "images" + ext))
456
+ write_points3D_text(points3D, os.path.join(path, "points3D") + ext)
457
+ else:
458
+ write_cameras_binary(cameras, os.path.join(path, "cameras" + ext))
459
+ write_images_binary(images, os.path.join(path, "images" + ext))
460
+ write_points3D_binary(points3D, os.path.join(path, "points3D") + ext)
461
+ return cameras, images, points3D
462
+
463
+
464
+ def qvec2rotmat(qvec):
465
+ return np.array([
466
+ [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
467
+ 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
468
+ 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
469
+ [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
470
+ 1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
471
+ 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
472
+ [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
473
+ 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
474
+ 1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
475
+
476
+
477
+ def rotmat2qvec(R):
478
+ Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
479
+ K = np.array([
480
+ [Rxx - Ryy - Rzz, 0, 0, 0],
481
+ [Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
482
+ [Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
483
+ [Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0
484
+ eigvals, eigvecs = np.linalg.eigh(K)
485
+ qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
486
+ if qvec[0] < 0:
487
+ qvec *= -1
488
+ return qvec
489
+
script.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### This is example of the script that will be run in the test environment.
2
+ ### Some parts of the code are compulsory and you should NOT CHANGE THEM.
3
+ ### They are between '''---compulsory---''' comments.
4
+ ### You can change the rest of the code to define and test your solution.
5
+ ### However, you should not change the signature of the provided function.
6
+ ### The script would save "submission.parquet" file in the current directory.
7
+ ### The actual logic of the solution is implemented in the `handcrafted_solution.py` file.
8
+ ### The `handcrafted_solution.py` file is a placeholder for your solution.
9
+ ### You should implement the logic of your solution in that file.
10
+ ### You can use any additional files and subdirectories to organize your code.
11
+
12
+ '''---compulsory---'''
13
+ import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
14
+ import subprocess
15
+ import importlib
16
+ from pathlib import Path
17
+ import subprocess
18
+
19
+
20
+ ### The function below is useful for installing additional python wheels.
21
+ def install_package_from_local_file(package_name, folder='packages'):
22
+ """
23
+ Installs a package from a local .whl file or a directory containing .whl files using pip.
24
+
25
+ Parameters:
26
+ path_to_file_or_directory (str): The path to the .whl file or the directory containing .whl files.
27
+ """
28
+ try:
29
+ pth = str(Path(folder) / package_name)
30
+ subprocess.check_call([subprocess.sys.executable, "-m", "pip", "install",
31
+ "--no-index", # Do not use package index
32
+ "--find-links", pth, # Look for packages in the specified directory or at the file
33
+ package_name]) # Specify the package to install
34
+ print(f"Package installed successfully from {pth}")
35
+ except subprocess.CalledProcessError as e:
36
+ print(f"Failed to install package from {pth}. Error: {e}")
37
+
38
+
39
+ # pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
40
+ install_package_from_local_file('webdataset')
41
+ # install_package_from_local_file('tqdm')
42
+
43
+ ### Here you can import any library or module you want.
44
+ ### The code below is used to read and parse the input dataset.
45
+ ### Please, do not modify it.
46
+
47
+ import webdataset as wds
48
+ from tqdm import tqdm
49
+ from typing import Dict
50
+ import pandas as pd
51
+ from transformers import AutoTokenizer
52
+ import os
53
+ import time
54
+ import io
55
+ from read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary
56
+ from PIL import Image as PImage
57
+ import numpy as np
58
+
59
+
60
+ def proc(row, split='train'):
61
+ out = {}
62
+ for k, v in row.items():
63
+ colname = k.split('.')[0]
64
+ if colname in {'ade20k', 'depthcm', 'gestalt'}:
65
+ if colname in out:
66
+ out[colname].append(v)
67
+ else:
68
+ out[colname] = [v]
69
+ elif colname in {'wireframe', 'mesh'}:
70
+ # out.update({a: b.tolist() for a,b in v.items()})
71
+ out.update({a: b for a,b in v.items()})
72
+ elif colname in 'kr':
73
+ out[colname.upper()] = v
74
+ else:
75
+ out[colname] = v
76
+
77
+ return Sample(out)
78
+
79
+
80
+ class Sample(Dict):
81
+ def __repr__(self):
82
+ return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
83
+
84
+ def convert_entry_to_human_readable(entry):
85
+ out = {}
86
+ already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't']
87
+ for k, v in entry.items():
88
+ if k in already_good:
89
+ out[k] = v
90
+ continue
91
+ if k == 'points3d':
92
+ out[k] = read_points3D_binary(fid=io.BytesIO(v))
93
+ if k == 'cameras':
94
+ out[k] = read_cameras_binary(fid=io.BytesIO(v))
95
+ if k == 'images':
96
+ out[k] = read_images_binary(fid=io.BytesIO(v))
97
+ if k in ['ade20k', 'gestalt']:
98
+ out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v]
99
+ if k == 'depthcm':
100
+ out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']]
101
+ return out
102
+
103
+ '''---end of compulsory---'''
104
+
105
+ def download_package(package_name, path_to_save='packages'):
106
+ """
107
+ Downloads a package using pip and saves it to a specified directory.
108
+
109
+ Parameters:
110
+ package_name (str): The name of the package to download.
111
+ path_to_save (str): The path to the directory where the package will be saved.
112
+ """
113
+ try:
114
+ # pip download webdataset -d packages/webdataset --platform manylinux1_x86_64 --python-version 38 --only-binary=:all:
115
+ subprocess.check_call([subprocess.sys.executable, "-m", "pip", "download", package_name,
116
+ "-d", str(Path(path_to_save)/package_name), # Download the package to the specified directory
117
+ "--platform", "manylinux1_x86_64", # Specify the platform
118
+ "--python-version", "38", # Specify the Python version
119
+ "--only-binary=:all:"]) # Download only binary packages
120
+ print(f'Package "{package_name}" downloaded successfully')
121
+ except subprocess.CalledProcessError as e:
122
+ print(f'Failed to downloaded package "{package_name}". Error: {e}')
123
+
124
+
125
+ ### The part below is used to define and test your solution.
126
+
127
+ if __name__ == "__main__":
128
+ from handcrafted_solution import predict
129
+ print ("------------ Loading dataset------------ ")
130
+ params = hoho.get_params()
131
+ dataset = hoho.get_dataset(decode=None, split='all', dataset_type='webdataset')
132
+ print('------------ Now you can do your solution ---------------')
133
+ solution = []
134
+ for i, sample in enumerate(tqdm(dataset)):
135
+ pred_vertices, pred_edges, semantics = predict(sample, visualize=False)
136
+ solution.append({
137
+ '__key__': sample['__key__'],
138
+ 'wf_vertices': pred_vertices.tolist(),
139
+ 'wf_edges': pred_edges,
140
+ 'edge_semantics': semantics,
141
+ })
142
+ print('------------ Saving results ---------------')
143
+ sub = pd.DataFrame(solution, columns=["__key__", "wf_vertices", "wf_edges", "edge_semantics"])
144
+ sub.to_parquet(Path(params['output_path']) / "submission.parquet")
145
+ print("------------ Done ------------ ")
viz3d.py ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ """
3
+ Copyright [2022] [Paul-Edouard Sarlin and Philipp Lindenberger]
4
+
5
+ Licensed under the Apache License, Version 2.0 (the "License");
6
+ you may not use this file except in compliance with the License.
7
+ You may obtain a copy of the License at
8
+
9
+ http://www.apache.org/licenses/LICENSE-2.0
10
+
11
+ Unless required by applicable law or agreed to in writing, software
12
+ distributed under the License is distributed on an "AS IS" BASIS,
13
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ See the License for the specific language governing permissions and
15
+ limitations under the License.
16
+
17
+ 3D visualization based on plotly.
18
+ Works for a small number of points and cameras, might be slow otherwise.
19
+
20
+ 1) Initialize a figure with `init_figure`
21
+ 2) Add 3D points, camera frustums, or both as a pycolmap.Reconstruction
22
+
23
+ Written by Paul-Edouard Sarlin and Philipp Lindenberger.
24
+ """
25
+ # Slightly modified by Dmytro Mishkin
26
+
27
+ from typing import Optional
28
+ import numpy as np
29
+ import pycolmap
30
+ import plotly.graph_objects as go
31
+
32
+
33
+ ### Some helper functions for geometry
34
+ def qvec2rotmat(qvec):
35
+ return np.array([
36
+ [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
37
+ 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
38
+ 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
39
+ [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
40
+ 1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
41
+ 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
42
+ [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
43
+ 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
44
+ 1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
45
+
46
+
47
+ def to_homogeneous(points):
48
+ pad = np.ones((points.shape[:-1]+(1,)), dtype=points.dtype)
49
+ return np.concatenate([points, pad], axis=-1)
50
+
51
+ def t_to_proj_center(qvec, tvec):
52
+ Rr = qvec2rotmat(qvec)
53
+ tt = (-Rr.T) @ tvec
54
+ return tt
55
+
56
+ def calib(params):
57
+ out = np.eye(3)
58
+ if len(params) == 3:
59
+ out[0,0] = params[0]
60
+ out[1,1] = params[0]
61
+ out[0,2] = params[1]
62
+ out[1,2] = params[2]
63
+ else:
64
+ out[0,0] = params[0]
65
+ out[1,1] = params[1]
66
+ out[0,2] = params[2]
67
+ out[1,2] = params[3]
68
+ return out
69
+
70
+
71
+ ### Plotting functions
72
+
73
+ def init_figure(height: int = 800) -> go.Figure:
74
+ """Initialize a 3D figure."""
75
+ fig = go.Figure()
76
+ axes = dict(
77
+ visible=False,
78
+ showbackground=False,
79
+ showgrid=False,
80
+ showline=False,
81
+ showticklabels=True,
82
+ autorange=True,
83
+ )
84
+ fig.update_layout(
85
+ template="plotly_dark",
86
+ height=height,
87
+ scene_camera=dict(
88
+ eye=dict(x=0., y=-.1, z=-2),
89
+ up=dict(x=0, y=-1., z=0),
90
+ projection=dict(type="orthographic")),
91
+ scene=dict(
92
+ xaxis=axes,
93
+ yaxis=axes,
94
+ zaxis=axes,
95
+ aspectmode='data',
96
+ dragmode='orbit',
97
+ ),
98
+ margin=dict(l=0, r=0, b=0, t=0, pad=0),
99
+ legend=dict(
100
+ orientation="h",
101
+ yanchor="top",
102
+ y=0.99,
103
+ xanchor="left",
104
+ x=0.1
105
+ ),
106
+ )
107
+ return fig
108
+
109
+
110
+ def plot_lines_3d(
111
+ fig: go.Figure,
112
+ pts: np.ndarray,
113
+ color: str = 'rgba(255, 255, 255, 1)',
114
+ ps: int = 2,
115
+ colorscale: Optional[str] = None,
116
+ name: Optional[str] = None):
117
+ """Plot a set of 3D points."""
118
+ x = pts[..., 0]
119
+ y = pts[..., 1]
120
+ z = pts[..., 2]
121
+ traces = [go.Scatter3d(x=x1, y=y1, z=z1,
122
+ mode='lines',
123
+ line=dict(color=color, width=2)) for x1, y1, z1 in zip(x,y,z)]
124
+ for t in traces:
125
+ fig.add_trace(t)
126
+ fig.update_traces(showlegend=False)
127
+
128
+
129
+ def plot_points(
130
+ fig: go.Figure,
131
+ pts: np.ndarray,
132
+ color: str = 'rgba(255, 0, 0, 1)',
133
+ ps: int = 2,
134
+ colorscale: Optional[str] = None,
135
+ name: Optional[str] = None):
136
+ """Plot a set of 3D points."""
137
+ x, y, z = pts.T
138
+ tr = go.Scatter3d(
139
+ x=x, y=y, z=z, mode='markers', name=name, legendgroup=name,
140
+ marker=dict(
141
+ size=ps, color=color, line_width=0.0, colorscale=colorscale))
142
+ fig.add_trace(tr)
143
+
144
+ def plot_camera(
145
+ fig: go.Figure,
146
+ R: np.ndarray,
147
+ t: np.ndarray,
148
+ K: np.ndarray,
149
+ color: str = 'rgb(0, 0, 255)',
150
+ name: Optional[str] = None,
151
+ legendgroup: Optional[str] = None,
152
+ size: float = 1.0):
153
+ """Plot a camera frustum from pose and intrinsic matrix."""
154
+ W, H = K[0, 2]*2, K[1, 2]*2
155
+ corners = np.array([[0, 0], [W, 0], [W, H], [0, H], [0, 0]])
156
+ if size is not None:
157
+ image_extent = max(size * W / 1024.0, size * H / 1024.0)
158
+ world_extent = max(W, H) / (K[0, 0] + K[1, 1]) / 0.5
159
+ scale = 0.5 * image_extent / world_extent
160
+ else:
161
+ scale = 1.0
162
+ corners = to_homogeneous(corners) @ np.linalg.inv(K).T
163
+ corners = (corners / 2 * scale) @ R.T + t
164
+
165
+ x, y, z = corners.T
166
+ rect = go.Scatter3d(
167
+ x=x, y=y, z=z, line=dict(color=color), legendgroup=legendgroup,
168
+ name=name, marker=dict(size=0.0001), showlegend=False)
169
+ fig.add_trace(rect)
170
+
171
+ x, y, z = np.concatenate(([t], corners)).T
172
+ i = [0, 0, 0, 0]
173
+ j = [1, 2, 3, 4]
174
+ k = [2, 3, 4, 1]
175
+
176
+ pyramid = go.Mesh3d(
177
+ x=x, y=y, z=z, color=color, i=i, j=j, k=k,
178
+ legendgroup=legendgroup, name=name, showlegend=False)
179
+ fig.add_trace(pyramid)
180
+ triangles = np.vstack((i, j, k)).T
181
+ vertices = np.concatenate(([t], corners))
182
+ tri_points = np.array([
183
+ vertices[i] for i in triangles.reshape(-1)
184
+ ])
185
+
186
+ x, y, z = tri_points.T
187
+ pyramid = go.Scatter3d(
188
+ x=x, y=y, z=z, mode='lines', legendgroup=legendgroup,
189
+ name=name, line=dict(color=color, width=1), showlegend=False)
190
+ fig.add_trace(pyramid)
191
+
192
+
193
+ def plot_camera_colmap(
194
+ fig: go.Figure,
195
+ image: pycolmap.Image,
196
+ camera: pycolmap.Camera,
197
+ name: Optional[str] = None,
198
+ **kwargs):
199
+ """Plot a camera frustum from PyCOLMAP objects"""
200
+ intr = calib(camera.params)
201
+ if intr[0][0] > 10000:
202
+ print("Bad camera")
203
+ return
204
+ plot_camera(
205
+ fig,
206
+ qvec2rotmat(image.qvec).T,
207
+ t_to_proj_center(image.qvec, image.tvec),
208
+ intr,#calibration_matrix(),
209
+ name=name or str(image.id),
210
+ **kwargs)
211
+
212
+
213
+ def plot_cameras(
214
+ fig: go.Figure,
215
+ reconstruction,#: pycolmap.Reconstruction,
216
+ **kwargs):
217
+ """Plot a camera as a cone with camera frustum."""
218
+ for image_id, image in reconstruction["images"].items():
219
+ plot_camera_colmap(
220
+ fig, image, reconstruction["cameras"][image.camera_id], **kwargs)
221
+
222
+
223
+ def plot_reconstruction(
224
+ fig: go.Figure,
225
+ rec,
226
+ color: str = 'rgb(0, 0, 255)',
227
+ name: Optional[str] = None,
228
+ points: bool = True,
229
+ cameras: bool = True,
230
+ cs: float = 1.0,
231
+ single_color_points=False,
232
+ camera_color='rgba(0, 255, 0, 0.5)'):
233
+ # rec is result of loading reconstruction from "read_write_colmap.py"
234
+ # Filter outliers
235
+ xyzs = []
236
+ rgbs = []
237
+ for k, p3D in rec['points'].items():
238
+ xyzs.append(p3D.xyz)
239
+ rgbs.append(p3D.rgb)
240
+
241
+ if points:
242
+ plot_points(fig, np.array(xyzs), color=color if single_color_points else np.array(rgbs), ps=1, name=name)
243
+ if cameras:
244
+ plot_cameras(fig, rec, color=camera_color, legendgroup=name, size=cs)
245
+
246
+
247
+ def plot_pointcloud(
248
+ fig: go.Figure,
249
+ pts: np.ndarray,
250
+ colors: np.ndarray,
251
+ ps: int = 2,
252
+ name: Optional[str] = None):
253
+ """Plot a set of 3D points."""
254
+ plot_points(fig, np.array(pts), color=colors, ps=ps, name=name)
255
+
256
+
257
+ def plot_triangle_mesh(
258
+ fig: go.Figure,
259
+ vert: np.ndarray,
260
+ colors: np.ndarray,
261
+ triangles: np.ndarray,
262
+ name: Optional[str] = None):
263
+ """Plot a triangle mesh."""
264
+ tr = go.Mesh3d(
265
+ x=vert[:,0],
266
+ y=vert[:,1],
267
+ z=vert[:,2],
268
+ vertexcolor = np.clip(255*colors, 0, 255),
269
+ # i, j and k give the vertices of triangles
270
+ # here we represent the 4 triangles of the tetrahedron surface
271
+ i=triangles[:,0],
272
+ j=triangles[:,1],
273
+ k=triangles[:,2],
274
+ name=name,
275
+ showscale=False
276
+ )
277
+ fig.add_trace(tr)
278
+
279
+ def plot_estimate_and_gt(pred_vertices, pred_connections, gt_vertices=None, gt_connections=None):
280
+ fig3d = init_figure()
281
+ c1 = (30, 20, 255)
282
+ img_color = [c1 for _ in range(len(pred_vertices))]
283
+ plot_points(fig3d, pred_vertices, color = img_color, ps = 10)
284
+ lines = []
285
+ for c in pred_connections:
286
+ v1 = pred_vertices[c[0]]
287
+ v2 = pred_vertices[c[1]]
288
+ lines.append(np.stack([v1, v2], axis=0))
289
+ plot_lines_3d(fig3d, np.array(lines), img_color, ps=4)
290
+ if gt_vertices is not None:
291
+ c2 = (30, 255, 20)
292
+ img_color2 = [c2 for _ in range(len(gt_vertices))]
293
+ plot_points(fig3d, gt_vertices, color = img_color2, ps = 10)
294
+ if gt_connections is not None:
295
+ gt_lines = []
296
+ for c in gt_connections:
297
+ v1 = gt_vertices[c[0]]
298
+ v2 = gt_vertices[c[1]]
299
+ gt_lines.append(np.stack([v1, v2], axis=0))
300
+ plot_lines_3d(fig3d, np.array(gt_lines), img_color2, ps=4)
301
+ fig3d.show()
302
+ return fig3d