usamaaleem99tech commited on
Commit
2b584c3
1 Parent(s): 00b7823

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -24
README.md CHANGED
@@ -7,6 +7,9 @@ datasets:
7
  - imagefolder
8
  metrics:
9
  - accuracy
 
 
 
10
  model-index:
11
  - name: segformer-class-classWeights-augmentation
12
  results:
@@ -22,7 +25,16 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 1.0
 
 
 
 
 
 
 
 
 
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.0018
36
- - Accuracy: 1.0
 
 
 
37
 
38
  ## Model description
39
 
@@ -61,30 +76,21 @@ The following hyperparameters were used during training:
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
64
- - num_epochs: 20
65
 
66
  ### Training results
67
 
68
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | No log | 0.89 | 6 | 0.9811 | 0.5862 |
71
- | 1.0899 | 1.93 | 13 | 0.9601 | 0.5862 |
72
- | 0.7599 | 2.96 | 20 | 0.8930 | 0.6897 |
73
- | 0.7599 | 4.0 | 27 | 0.5230 | 0.7931 |
74
- | 0.3436 | 4.89 | 33 | 0.1652 | 0.9310 |
75
- | 0.1853 | 5.93 | 40 | 0.0544 | 1.0 |
76
- | 0.1853 | 6.96 | 47 | 0.0937 | 0.9655 |
77
- | 0.1839 | 8.0 | 54 | 0.0566 | 0.9655 |
78
- | 0.1772 | 8.89 | 60 | 0.0084 | 1.0 |
79
- | 0.1772 | 9.93 | 67 | 0.0114 | 1.0 |
80
- | 0.1016 | 10.96 | 74 | 0.0039 | 1.0 |
81
- | 0.1534 | 12.0 | 81 | 0.0038 | 1.0 |
82
- | 0.1534 | 12.89 | 87 | 0.0187 | 0.9655 |
83
- | 0.1256 | 13.93 | 94 | 0.0023 | 1.0 |
84
- | 0.1234 | 14.96 | 101 | 0.0016 | 1.0 |
85
- | 0.1234 | 16.0 | 108 | 0.0019 | 1.0 |
86
- | 0.1129 | 16.89 | 114 | 0.0018 | 1.0 |
87
- | 0.17 | 17.78 | 120 | 0.0018 | 1.0 |
88
 
89
 
90
  ### Framework versions
 
7
  - imagefolder
8
  metrics:
9
  - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
  model-index:
14
  - name: segformer-class-classWeights-augmentation
15
  results:
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.9655172413793104
29
+ - name: F1
30
+ type: f1
31
+ value: 0.964683592269799
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.9674329501915708
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.9655172413793104
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1453
48
+ - Accuracy: 0.9655
49
+ - F1: 0.9647
50
+ - Precision: 0.9674
51
+ - Recall: 0.9655
52
 
53
  ## Model description
54
 
 
76
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
  - lr_scheduler_type: linear
78
  - lr_scheduler_warmup_ratio: 0.1
79
+ - num_epochs: 10
80
 
81
  ### Training results
82
 
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
84
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
85
+ | No log | 0.89 | 6 | 0.0454 | 1.0 | 1.0 | 1.0 | 1.0 |
86
+ | 0.1558 | 1.93 | 13 | 0.0816 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
87
+ | 0.1727 | 2.96 | 20 | 0.0775 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
88
+ | 0.1727 | 4.0 | 27 | 0.0443 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
89
+ | 0.1299 | 4.89 | 33 | 0.0535 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
90
+ | 0.1808 | 5.93 | 40 | 0.0298 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
91
+ | 0.1808 | 6.96 | 47 | 0.0195 | 1.0 | 1.0 | 1.0 | 1.0 |
92
+ | 0.1406 | 8.0 | 54 | 0.0526 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
93
+ | 0.1193 | 8.89 | 60 | 0.1453 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
 
 
 
 
 
 
 
 
 
94
 
95
 
96
  ### Framework versions