usamaaleem99tech
commited on
Commit
•
2b584c3
1
Parent(s):
00b7823
update model card README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,9 @@ datasets:
|
|
7 |
- imagefolder
|
8 |
metrics:
|
9 |
- accuracy
|
|
|
|
|
|
|
10 |
model-index:
|
11 |
- name: segformer-class-classWeights-augmentation
|
12 |
results:
|
@@ -22,7 +25,16 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy:
|
|
|
|
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -61,30 +76,21 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
-
|
70 |
-
| No log | 0.89 | 6 | 0.
|
71 |
-
|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.1772 | 9.93 | 67 | 0.0114 | 1.0 |
|
80 |
-
| 0.1016 | 10.96 | 74 | 0.0039 | 1.0 |
|
81 |
-
| 0.1534 | 12.0 | 81 | 0.0038 | 1.0 |
|
82 |
-
| 0.1534 | 12.89 | 87 | 0.0187 | 0.9655 |
|
83 |
-
| 0.1256 | 13.93 | 94 | 0.0023 | 1.0 |
|
84 |
-
| 0.1234 | 14.96 | 101 | 0.0016 | 1.0 |
|
85 |
-
| 0.1234 | 16.0 | 108 | 0.0019 | 1.0 |
|
86 |
-
| 0.1129 | 16.89 | 114 | 0.0018 | 1.0 |
|
87 |
-
| 0.17 | 17.78 | 120 | 0.0018 | 1.0 |
|
88 |
|
89 |
|
90 |
### Framework versions
|
|
|
7 |
- imagefolder
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
+
- f1
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
model-index:
|
14 |
- name: segformer-class-classWeights-augmentation
|
15 |
results:
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.9655172413793104
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.964683592269799
|
32 |
+
- name: Precision
|
33 |
+
type: precision
|
34 |
+
value: 0.9674329501915708
|
35 |
+
- name: Recall
|
36 |
+
type: recall
|
37 |
+
value: 0.9655172413793104
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1453
|
48 |
+
- Accuracy: 0.9655
|
49 |
+
- F1: 0.9647
|
50 |
+
- Precision: 0.9674
|
51 |
+
- Recall: 0.9655
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
- lr_scheduler_type: linear
|
78 |
- lr_scheduler_warmup_ratio: 0.1
|
79 |
+
- num_epochs: 10
|
80 |
|
81 |
### Training results
|
82 |
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
84 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
85 |
+
| No log | 0.89 | 6 | 0.0454 | 1.0 | 1.0 | 1.0 | 1.0 |
|
86 |
+
| 0.1558 | 1.93 | 13 | 0.0816 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
87 |
+
| 0.1727 | 2.96 | 20 | 0.0775 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
88 |
+
| 0.1727 | 4.0 | 27 | 0.0443 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
89 |
+
| 0.1299 | 4.89 | 33 | 0.0535 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
90 |
+
| 0.1808 | 5.93 | 40 | 0.0298 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
91 |
+
| 0.1808 | 6.96 | 47 | 0.0195 | 1.0 | 1.0 | 1.0 | 1.0 |
|
92 |
+
| 0.1406 | 8.0 | 54 | 0.0526 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
93 |
+
| 0.1193 | 8.89 | 60 | 0.1453 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
### Framework versions
|