--- license: apache-2.0 tags: - merge - mergekit - OpenPipe/mistral-ft-optimized-1227 - NeverSleep/Noromaid-7b-v0.2 base_model: - OpenPipe/mistral-ft-optimized-1227 --- # ros-7b-v1 ros-7b-v1 is a merge of the following models using [Mergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * Base Model [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co./OpenPipe/mistral-ft-optimized-1227) * [cgato/Thespis-Mistral-7b-v0.6](https://huggingface.co./cgato/Thespis-Mistral-7b-v0.6) * [saishf/West-Hermes-7B](https://huggingface.co./saishf/West-Hermes-7B) * [NeverSleep/Noromaid-7b-v0.2](https://huggingface.co./NeverSleep/Noromaid-7b-v0.2) ## 🧩 Configuration ```yaml slices: - sources: - model: uproai/RosMistral-2x7B layer_range: [0, 32] - model: NeverSleep/Noromaid-7b-v0.2 layer_range: [0, 32] merge_method: slerp base_model: uproai/RosMistral-2x7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "uproai/ros-7b-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```