universalml universalml0 commited on
Commit
f4e32a8
0 Parent(s):

Duplicate from universalml0/finetuned_embedding_model_e5-large-multilingual-large

Browse files
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-large-instruct
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:45199
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: प्रधानमन्त्री नरेन्द्र मोदी सरकारका असफलताहरू के के हुन्?
16
+ sentences:
17
+ - पूर्वोत्तर राज्यहरूका मुख्य समस्याहरू के के हुन् र तिनीहरूको केन्द्रीय सरकारसँग
18
+ असन्तोष के हो?
19
+ - पूर्णांक के हो?
20
+ - नरेन्द्र मोदी सरकारले कुन क्षेत्रमा असफल भएको छ?
21
+ - source_sentence: 'मैले विचार गर्नुपर्ने कलेजहरू के के हुन्, विचार गर्नुपर्ने कारकहरू:
22
+ केएमसी म्यानिपल वा केएमसी मंगोलमा?'
23
+ sentences:
24
+ - मंगलोर शान्त वा हिंस्रक स्थान हो?
25
+ - पुरुषहरूको तुलनामा महिलाहरूको लागि यौनिक आनन्द बढी हुन्छ कि हुँदैन?
26
+ - के कसैले केएमसी मानिपाल र मंगलोरको संक्षिप्त तुलना गर्न सक्छ?
27
+ - source_sentence: म कसरी मेरो अङ्ग्रेजी भाषा सुधार गर्न सक्छु?
28
+ sentences:
29
+ - म कसरी एक नेचुरल अंग्रेजी वक्ता बन्न सक्छु?
30
+ - म जहाँ कुनै मूल अंग्रेजी वक्ताहरू छन् जो मेरो साथ मित्र बन्न चाहन्छन् र मलाई मद्दत
31
+ गर्न चाहन्छन्?
32
+ - ने टी २०१ 6 को लागि निजी कलेजहरूको लागि एमबीबीएसको लागि के कटअफ हुनेछ?
33
+ - source_sentence: समय यात्रा सम्भव छ कि छैन? यदि छ भने, कसरी?
34
+ sentences:
35
+ - अन्धकारमय वेब सुरक्षित छ कि छैन ब्राउज गर्न?
36
+ - यदि कुनै बितेको समय राम्रो थियो र समयको यात्रा सम्भव थियो भने म किन वर्तमान समयमा
37
+ बाँचिरहेको छु?
38
+ - भविष्यमा समय यात्रा सम्भव हुनेछ कि छैन?
39
+ - source_sentence: म कसरी बिस्तारै तौल घटाउन सक्छु?
40
+ sentences:
41
+ - कसरी कुनै केटाले त्यो केटीसँग बदला लिन सक्छ जसले उसलाई धोका दिएको छ?
42
+ - कस्तो प्रकारको आहार कसैले आहार नचाहने व्यक्तिका लागि उत्तम हुन्छ?
43
+ - वजन घटाउनको लागि कुनै राम्रो आहार हो?
44
+ ---
45
+
46
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
47
+
48
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the universalml0/nepali_embedding_dataset dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
49
+
50
+ ## Model Details
51
+
52
+ ### Model Description
53
+ - **Model Type:** Sentence Transformer
54
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision baa7be480a7de1539afce709c8f13f833a510e0a -->
55
+ - **Maximum Sequence Length:** 512 tokens
56
+ - **Output Dimensionality:** 1024 tokens
57
+ - **Similarity Function:** Cosine Similarity
58
+ - **Training Dataset:**
59
+ - universalml0/nepali_embedding_dataset
60
+ <!-- - **Language:** Unknown -->
61
+ <!-- - **License:** Unknown -->
62
+
63
+ ### Model Sources
64
+
65
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
66
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
67
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
68
+
69
+ ### Full Model Architecture
70
+
71
+ ```
72
+ SentenceTransformer(
73
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
74
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
75
+ (2): Normalize()
76
+ )
77
+ ```
78
+
79
+ ## Usage
80
+
81
+ ### Direct Usage (Sentence Transformers)
82
+
83
+ First install the Sentence Transformers library:
84
+
85
+ ```bash
86
+ pip install -U sentence-transformers
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+ ```python
91
+ from sentence_transformers import SentenceTransformer
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SentenceTransformer("universalml0/finetuned_embedding_model_e5-large-multilingual-large")
95
+ # Run inference
96
+ sentences = [
97
+ 'म कसरी बिस्तारै तौल घटाउन सक्छु?',
98
+ 'वजन घटाउनको लागि कुनै राम्रो आहार हो?',
99
+ 'कस्तो प्रकारको आहार कसैले आहार नचाहने व्यक्तिका लागि उत्तम हुन्छ?',
100
+ ]
101
+ embeddings = model.encode(sentences)
102
+ print(embeddings.shape)
103
+ # [3, 1024]
104
+
105
+ # Get the similarity scores for the embeddings
106
+ similarities = model.similarity(embeddings, embeddings)
107
+ print(similarities.shape)
108
+ # [3, 3]
109
+ ```
110
+
111
+ <!--
112
+ ### Direct Usage (Transformers)
113
+
114
+ <details><summary>Click to see the direct usage in Transformers</summary>
115
+
116
+ </details>
117
+ -->
118
+
119
+ <!--
120
+ ### Downstream Usage (Sentence Transformers)
121
+
122
+ You can finetune this model on your own dataset.
123
+
124
+ <details><summary>Click to expand</summary>
125
+
126
+ </details>
127
+ -->
128
+
129
+ <!--
130
+ ### Out-of-Scope Use
131
+
132
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
133
+ -->
134
+
135
+ <!--
136
+ ## Bias, Risks and Limitations
137
+
138
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
139
+ -->
140
+
141
+ <!--
142
+ ### Recommendations
143
+
144
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
145
+ -->
146
+
147
+ ## Training Details
148
+
149
+ ### Training Dataset
150
+
151
+ #### universalml0/nepali_embedding_dataset
152
+
153
+ * Dataset: universalml0/nepali_embedding_dataset
154
+ * Size: 45,199 training samples
155
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
156
+ * Approximate statistics based on the first 1000 samples:
157
+ | | anchor | positive | negative |
158
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
159
+ | type | string | string | string |
160
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.53 tokens</li><li>max: 486 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.68 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.9 tokens</li><li>max: 156 tokens</li></ul> |
161
+ * Samples:
162
+ | anchor | positive | negative |
163
+ |:----------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|
164
+ | <code>भारतीय सरकारले ५०० र १००० रुपयाको नोटमाथि प्रतिबन्ध लगाउनुको कारण के थियो?</code> | <code>भारतीय सरकारले ५०० र १००० को नोटलाई निष्क्रिय पारेको छ तर तिनीहरूलाई ५०० र २००० को नोटहरूसँग प्रतिस्थापन गरेको छ। के यो विरोधाभासी छैन?</code> | <code>भारतीय सरकारले किन चाहेको भए सीमित मात्रामा नोटहरू मुद्रण गर्न र बजेट घाटा क्लियर गर्न सक्दैन? विशेष गरी, किन कुनै पनि देशले यो गर्न सक्दैन?</code> |
165
+ | <code>भारतीय हुनुको अनुभूति कस्तो हुन्छ?</code> | <code>भारतीय हुनुको अनुभूति कस्तो हुन्छ?</code> | <code>भारतीय महिला हुनुको अनुभव कस्तो हुन्छ?</code> |
166
+ | <code>के कुनै व्यक्तिले edWisor मार्फत कुनै नौकरी पाएको छ?</code> | <code>एडवाइजर वैध छ र के कसैले यस मार्फत कुनै नौकरी पाएको छ?</code> | <code>एलिटमसको माध्यमबाट कसैले काम पाएको छ?</code> |
167
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
168
+ ```json
169
+ {
170
+ "scale": 20.0,
171
+ "similarity_fct": "cos_sim"
172
+ }
173
+ ```
174
+
175
+ ### Training Hyperparameters
176
+ #### Non-Default Hyperparameters
177
+
178
+ - `per_device_train_batch_size`: 4
179
+ - `learning_rate`: 1e-06
180
+ - `num_train_epochs`: 1
181
+ - `warmup_ratio`: 0.3
182
+ - `bf16`: True
183
+ - `batch_sampler`: no_duplicates
184
+
185
+ #### All Hyperparameters
186
+ <details><summary>Click to expand</summary>
187
+
188
+ - `overwrite_output_dir`: False
189
+ - `do_predict`: False
190
+ - `eval_strategy`: no
191
+ - `prediction_loss_only`: True
192
+ - `per_device_train_batch_size`: 4
193
+ - `per_device_eval_batch_size`: 8
194
+ - `per_gpu_train_batch_size`: None
195
+ - `per_gpu_eval_batch_size`: None
196
+ - `gradient_accumulation_steps`: 1
197
+ - `eval_accumulation_steps`: None
198
+ - `torch_empty_cache_steps`: None
199
+ - `learning_rate`: 1e-06
200
+ - `weight_decay`: 0.0
201
+ - `adam_beta1`: 0.9
202
+ - `adam_beta2`: 0.999
203
+ - `adam_epsilon`: 1e-08
204
+ - `max_grad_norm`: 1.0
205
+ - `num_train_epochs`: 1
206
+ - `max_steps`: -1
207
+ - `lr_scheduler_type`: linear
208
+ - `lr_scheduler_kwargs`: {}
209
+ - `warmup_ratio`: 0.3
210
+ - `warmup_steps`: 0
211
+ - `log_level`: passive
212
+ - `log_level_replica`: warning
213
+ - `log_on_each_node`: True
214
+ - `logging_nan_inf_filter`: True
215
+ - `save_safetensors`: True
216
+ - `save_on_each_node`: False
217
+ - `save_only_model`: False
218
+ - `restore_callback_states_from_checkpoint`: False
219
+ - `no_cuda`: False
220
+ - `use_cpu`: False
221
+ - `use_mps_device`: False
222
+ - `seed`: 42
223
+ - `data_seed`: None
224
+ - `jit_mode_eval`: False
225
+ - `use_ipex`: False
226
+ - `bf16`: True
227
+ - `fp16`: False
228
+ - `fp16_opt_level`: O1
229
+ - `half_precision_backend`: auto
230
+ - `bf16_full_eval`: False
231
+ - `fp16_full_eval`: False
232
+ - `tf32`: None
233
+ - `local_rank`: 0
234
+ - `ddp_backend`: None
235
+ - `tpu_num_cores`: None
236
+ - `tpu_metrics_debug`: False
237
+ - `debug`: []
238
+ - `dataloader_drop_last`: False
239
+ - `dataloader_num_workers`: 0
240
+ - `dataloader_prefetch_factor`: None
241
+ - `past_index`: -1
242
+ - `disable_tqdm`: False
243
+ - `remove_unused_columns`: True
244
+ - `label_names`: None
245
+ - `load_best_model_at_end`: False
246
+ - `ignore_data_skip`: False
247
+ - `fsdp`: []
248
+ - `fsdp_min_num_params`: 0
249
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
250
+ - `fsdp_transformer_layer_cls_to_wrap`: None
251
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
252
+ - `deepspeed`: None
253
+ - `label_smoothing_factor`: 0.0
254
+ - `optim`: adamw_torch
255
+ - `optim_args`: None
256
+ - `adafactor`: False
257
+ - `group_by_length`: False
258
+ - `length_column_name`: length
259
+ - `ddp_find_unused_parameters`: None
260
+ - `ddp_bucket_cap_mb`: None
261
+ - `ddp_broadcast_buffers`: False
262
+ - `dataloader_pin_memory`: True
263
+ - `dataloader_persistent_workers`: False
264
+ - `skip_memory_metrics`: True
265
+ - `use_legacy_prediction_loop`: False
266
+ - `push_to_hub`: False
267
+ - `resume_from_checkpoint`: None
268
+ - `hub_model_id`: None
269
+ - `hub_strategy`: every_save
270
+ - `hub_private_repo`: False
271
+ - `hub_always_push`: False
272
+ - `gradient_checkpointing`: False
273
+ - `gradient_checkpointing_kwargs`: None
274
+ - `include_inputs_for_metrics`: False
275
+ - `eval_do_concat_batches`: True
276
+ - `fp16_backend`: auto
277
+ - `push_to_hub_model_id`: None
278
+ - `push_to_hub_organization`: None
279
+ - `mp_parameters`:
280
+ - `auto_find_batch_size`: False
281
+ - `full_determinism`: False
282
+ - `torchdynamo`: None
283
+ - `ray_scope`: last
284
+ - `ddp_timeout`: 1800
285
+ - `torch_compile`: False
286
+ - `torch_compile_backend`: None
287
+ - `torch_compile_mode`: None
288
+ - `dispatch_batches`: None
289
+ - `split_batches`: None
290
+ - `include_tokens_per_second`: False
291
+ - `include_num_input_tokens_seen`: False
292
+ - `neftune_noise_alpha`: None
293
+ - `optim_target_modules`: None
294
+ - `batch_eval_metrics`: False
295
+ - `eval_on_start`: False
296
+ - `eval_use_gather_object`: False
297
+ - `batch_sampler`: no_duplicates
298
+ - `multi_dataset_batch_sampler`: proportional
299
+
300
+ </details>
301
+
302
+ ### Training Logs
303
+ <details><summary>Click to expand</summary>
304
+
305
+ | Epoch | Step | Training Loss |
306
+ |:------:|:-----:|:-------------:|
307
+ | 0.0088 | 100 | 0.8671 |
308
+ | 0.0177 | 200 | 0.8234 |
309
+ | 0.0265 | 300 | 0.8223 |
310
+ | 0.0354 | 400 | 0.7423 |
311
+ | 0.0442 | 500 | 0.6605 |
312
+ | 0.0531 | 600 | 0.5558 |
313
+ | 0.0619 | 700 | 0.4076 |
314
+ | 0.0708 | 800 | 0.3617 |
315
+ | 0.0796 | 900 | 0.3087 |
316
+ | 0.0885 | 1000 | 0.2747 |
317
+ | 0.0973 | 1100 | 0.2409 |
318
+ | 0.1062 | 1200 | 0.229 |
319
+ | 0.1150 | 1300 | 0.209 |
320
+ | 0.1239 | 1400 | 0.2556 |
321
+ | 0.1327 | 1500 | 0.2536 |
322
+ | 0.1416 | 1600 | 0.2092 |
323
+ | 0.1504 | 1700 | 0.2464 |
324
+ | 0.1593 | 1800 | 0.1727 |
325
+ | 0.1681 | 1900 | 0.281 |
326
+ | 0.1770 | 2000 | 0.2289 |
327
+ | 0.1858 | 2100 | 0.2065 |
328
+ | 0.1947 | 2200 | 0.1751 |
329
+ | 0.2035 | 2300 | 0.231 |
330
+ | 0.2124 | 2400 | 0.2127 |
331
+ | 0.2212 | 2500 | 0.1908 |
332
+ | 0.2301 | 2600 | 0.2131 |
333
+ | 0.2389 | 2700 | 0.1704 |
334
+ | 0.2478 | 2800 | 0.1923 |
335
+ | 0.2566 | 2900 | 0.1635 |
336
+ | 0.2655 | 3000 | 0.2061 |
337
+ | 0.2743 | 3100 | 0.1843 |
338
+ | 0.2832 | 3200 | 0.1443 |
339
+ | 0.2920 | 3300 | 0.1513 |
340
+ | 0.3009 | 3400 | 0.1879 |
341
+ | 0.3097 | 3500 | 0.2372 |
342
+ | 0.3186 | 3600 | 0.1542 |
343
+ | 0.3274 | 3700 | 0.2523 |
344
+ | 0.3363 | 3800 | 0.2055 |
345
+ | 0.3451 | 3900 | 0.1474 |
346
+ | 0.3540 | 4000 | 0.1647 |
347
+ | 0.3628 | 4100 | 0.1615 |
348
+ | 0.3717 | 4200 | 0.1271 |
349
+ | 0.3805 | 4300 | 0.1451 |
350
+ | 0.3894 | 4400 | 0.1887 |
351
+ | 0.3982 | 4500 | 0.1334 |
352
+ | 0.4071 | 4600 | 0.1962 |
353
+ | 0.4159 | 4700 | 0.1695 |
354
+ | 0.4248 | 4800 | 0.1561 |
355
+ | 0.4336 | 4900 | 0.1146 |
356
+ | 0.4425 | 5000 | 0.1381 |
357
+ | 0.4513 | 5100 | 0.1452 |
358
+ | 0.4602 | 5200 | 0.2388 |
359
+ | 0.4690 | 5300 | 0.1951 |
360
+ | 0.4779 | 5400 | 0.1142 |
361
+ | 0.4867 | 5500 | 0.182 |
362
+ | 0.4956 | 5600 | 0.1968 |
363
+ | 0.5044 | 5700 | 0.1744 |
364
+ | 0.5133 | 5800 | 0.1868 |
365
+ | 0.5221 | 5900 | 0.1452 |
366
+ | 0.5310 | 6000 | 0.1345 |
367
+ | 0.5398 | 6100 | 0.1318 |
368
+ | 0.5487 | 6200 | 0.218 |
369
+ | 0.5575 | 6300 | 0.2118 |
370
+ | 0.5664 | 6400 | 0.1972 |
371
+ | 0.5752 | 6500 | 0.0935 |
372
+ | 0.5841 | 6600 | 0.1991 |
373
+ | 0.5929 | 6700 | 0.1252 |
374
+ | 0.6018 | 6800 | 0.1128 |
375
+ | 0.6106 | 6900 | 0.1585 |
376
+ | 0.6195 | 7000 | 0.2293 |
377
+ | 0.6283 | 7100 | 0.2104 |
378
+ | 0.6372 | 7200 | 0.1416 |
379
+ | 0.6460 | 7300 | 0.2004 |
380
+ | 0.6549 | 7400 | 0.1446 |
381
+ | 0.6637 | 7500 | 0.1171 |
382
+ | 0.6726 | 7600 | 0.1386 |
383
+ | 0.6814 | 7700 | 0.1291 |
384
+ | 0.6903 | 7800 | 0.1546 |
385
+ | 0.6991 | 7900 | 0.1484 |
386
+ | 0.7080 | 8000 | 0.129 |
387
+ | 0.7168 | 8100 | 0.1873 |
388
+ | 0.7257 | 8200 | 0.1333 |
389
+ | 0.7345 | 8300 | 0.1713 |
390
+ | 0.7434 | 8400 | 0.1016 |
391
+ | 0.7522 | 8500 | 0.1519 |
392
+ | 0.7611 | 8600 | 0.1851 |
393
+ | 0.7699 | 8700 | 0.144 |
394
+ | 0.7788 | 8800 | 0.1488 |
395
+ | 0.7876 | 8900 | 0.1568 |
396
+ | 0.7965 | 9000 | 0.1672 |
397
+ | 0.8053 | 9100 | 0.1236 |
398
+ | 0.8142 | 9200 | 0.0973 |
399
+ | 0.8230 | 9300 | 0.1491 |
400
+ | 0.8319 | 9400 | 0.2251 |
401
+ | 0.8407 | 9500 | 0.1433 |
402
+ | 0.8496 | 9600 | 0.2634 |
403
+ | 0.8584 | 9700 | 0.1723 |
404
+ | 0.8673 | 9800 | 0.2373 |
405
+ | 0.8761 | 9900 | 0.1065 |
406
+ | 0.8850 | 10000 | 0.1578 |
407
+ | 0.8938 | 10100 | 0.1127 |
408
+ | 0.9027 | 10200 | 0.1632 |
409
+ | 0.9115 | 10300 | 0.19 |
410
+ | 0.9204 | 10400 | 0.0958 |
411
+ | 0.9292 | 10500 | 0.1029 |
412
+ | 0.9381 | 10600 | 0.1183 |
413
+ | 0.9469 | 10700 | 0.1779 |
414
+ | 0.9558 | 10800 | 0.1571 |
415
+ | 0.9646 | 10900 | 0.1666 |
416
+ | 0.9735 | 11000 | 0.1405 |
417
+ | 0.9823 | 11100 | 0.147 |
418
+ | 0.9912 | 11200 | 0.1428 |
419
+ | 1.0 | 11300 | 0.1724 |
420
+
421
+ </details>
422
+
423
+ ### Framework Versions
424
+ - Python: 3.9.5
425
+ - Sentence Transformers: 3.0.1
426
+ - Transformers: 4.44.2
427
+ - PyTorch: 2.3.0+cu121
428
+ - Accelerate: 0.33.0
429
+ - Datasets: 2.21.0
430
+ - Tokenizers: 0.19.1
431
+
432
+ ## Citation
433
+
434
+ ### BibTeX
435
+
436
+ #### Sentence Transformers
437
+ ```bibtex
438
+ @inproceedings{reimers-2019-sentence-bert,
439
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
440
+ author = "Reimers, Nils and Gurevych, Iryna",
441
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
442
+ month = "11",
443
+ year = "2019",
444
+ publisher = "Association for Computational Linguistics",
445
+ url = "https://arxiv.org/abs/1908.10084",
446
+ }
447
+ ```
448
+
449
+ #### MultipleNegativesRankingLoss
450
+ ```bibtex
451
+ @misc{henderson2017efficient,
452
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
453
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
454
+ year={2017},
455
+ eprint={1705.00652},
456
+ archivePrefix={arXiv},
457
+ primaryClass={cs.CL}
458
+ }
459
+ ```
460
+
461
+ <!--
462
+ ## Glossary
463
+
464
+ *Clearly define terms in order to be accessible across audiences.*
465
+ -->
466
+
467
+ <!--
468
+ ## Model Card Authors
469
+
470
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
471
+ -->
472
+
473
+ <!--
474
+ ## Model Card Contact
475
+
476
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
477
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-large-instruct",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9896ca3aa5099620001a7eba78c5dbf064c5b531ca15184e4913f40ef1549cd0
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }