File size: 6,136 Bytes
91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 fd92562 91fd4e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
using Newtonsoft.Json;
using System.Text;
/*
* Whisper Inference Code
* ======================
*
* Put this script on the Main Camera
*
* In Assets/StreamingAssets put:
*
* AudioDecoder_Tiny.sentis
* AudioEncoder_Tiny.sentis
* LogMelSepctro.sentis
* vocab.json
*
* Drag a 30s 16khz mono uncompressed audioclip into the audioClip field.
*
* Install package com.unity.nuget.newtonsoft-json from packagemanger
* Install package com.unity.sentis
*
*/
public class RunWhisper : MonoBehaviour
{
IWorker decoderEngine, encoderEngine, spectroEngine;
const BackendType backend = BackendType.GPUCompute;
// Link your audioclip here. Format must be 16Hz mono non-compressed.
public AudioClip audioClip;
// This is how many tokens you want. It can be adjusted.
const int maxTokens = 100;
//Special tokens
const int END_OF_TEXT = 50257;
const int START_OF_TRANSCRIPT = 50258;
const int ENGLISH = 50259;
const int TRANSCRIBE = 50359;
const int START_TIME = 50364;
Ops ops;
ITensorAllocator allocator;
int numSamples;
float[] data;
string[] tokens;
int currentToken = 0;
int[] outputTokens = new int[maxTokens];
// Used for special character decoding
int[] whiteSpaceCharacters = new int[256];
TensorFloat encodedAudio;
bool transcribe = false;
string outputString = "";
// Maximum size of audioClip (30s at 16kHz)
const int maxSamples = 30 * 16000;
void Start()
{
allocator = new TensorCachingAllocator();
ops = WorkerFactory.CreateOps(backend, allocator);
SetupWhiteSpaceShifts();
GetTokens();
Model decoder = ModelLoader.Load(Application.streamingAssetsPath + "/AudioDecoder_Tiny.sentis");
Model encoder = ModelLoader.Load(Application.streamingAssetsPath + "/AudioEncoder_Tiny.sentis");
Model spectro = ModelLoader.Load(Application.streamingAssetsPath + "/LogMelSepctro.sentis");
decoderEngine = WorkerFactory.CreateWorker(backend, decoder);
encoderEngine = WorkerFactory.CreateWorker(backend, encoder);
spectroEngine = WorkerFactory.CreateWorker(backend, spectro);
outputTokens[0] = START_OF_TRANSCRIPT;
outputTokens[1] = ENGLISH;
outputTokens[2] = TRANSCRIBE;
outputTokens[3] = START_TIME;
currentToken = 3;
LoadAudio();
EncodeAudio();
transcribe = true;
}
void LoadAudio()
{
if(audioClip.frequency != 16000)
{
Debug.Log($"The audio clip should have frequency 16kHz. It has frequency {audioClip.frequency / 1000f}kHz");
}
numSamples = audioClip.samples;
data = new float[numSamples];
audioClip.GetData(data, 0);
}
void GetTokens()
{
var jsonText = File.ReadAllText(Application.streamingAssetsPath + "/vocab.json");
var vocab = Newtonsoft.Json.JsonConvert.DeserializeObject<Dictionary<string, int>>(jsonText);
tokens = new string[vocab.Count];
foreach(var item in vocab)
{
tokens[item.Value] = item.Key;
}
}
void EncodeAudio()
{
using var input = new TensorFloat(new TensorShape(1, numSamples), data);
if (numSamples > maxSamples)
{
Debug.Log("The AudioClip is too long.");
return;
}
// Pad out to 30 seconds at 16khz if necessary
using var input30seconds = ops.Pad(input, new int[] { 0, 0, 0, maxSamples - numSamples });
spectroEngine.Execute(input30seconds);
var spectroOutput = spectroEngine.PeekOutput() as TensorFloat;
encoderEngine.Execute(spectroOutput);
encodedAudio = encoderEngine.PeekOutput() as TensorFloat;
}
// Update is called once per frame
void Update()
{
if (transcribe && currentToken < outputTokens.Length - 1)
{
using var tokensSoFar = new TensorInt(new TensorShape(1, outputTokens.Length), outputTokens);
var inputs = new Dictionary<string, Tensor>
{
{"encoded_audio",encodedAudio },
{"tokens" , tokensSoFar }
};
decoderEngine.Execute(inputs);
var tokensOut = decoderEngine.PeekOutput() as TensorFloat;
using var tokensPredictions = ops.ArgMax(tokensOut, 2, false);
tokensPredictions.MakeReadable();
int ID = tokensPredictions[currentToken];
currentToken++;
outputTokens[currentToken] = ID;
if (ID == END_OF_TEXT)
{
transcribe = false;
}
else if (ID >= tokens.Length)
{
outputString += $"(time={(ID - START_TIME) * 0.02f})";
}
else outputString += GetUnicodeText(tokens[ID]);
Debug.Log(outputString);
}
}
// Translates encoded special characters to Unicode
string GetUnicodeText(string text)
{
var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text));
return Encoding.UTF8.GetString(bytes);
}
string ShiftCharacterDown(string text)
{
string outText = "";
foreach (char letter in text)
{
outText += ((int)letter <= 256) ? letter :
(char)whiteSpaceCharacters[(int)(letter - 256)];
}
return outText;
}
void SetupWhiteSpaceShifts()
{
for (int i = 0, n = 0; i < 256; i++)
{
if (IsWhiteSpace((char)i)) whiteSpaceCharacters[n++] = i;
}
}
bool IsWhiteSpace(char c)
{
return !(('!' <= c && c <= '~') || ('�' <= c && c <= '�') || ('�' <= c && c <= '�'));
}
private void OnDestroy()
{
decoderEngine?.Dispose();
encoderEngine?.Dispose();
spectroEngine?.Dispose();
ops?.Dispose();
allocator?.Dispose();
}
}
|