--- library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - autotrain base_model: HuggingFaceTB/SmolLM-135M-Instruct widget: - source_sentence: 'search_query: i love autotrain' sentences: - 'search_query: huggingface auto train' - 'search_query: hugging face auto train' - 'search_query: i love autotrain' pipeline_tag: sentence-similarity datasets: - skratos115/opendevin_DataDevinator license: apache-2.0 --- # Model Trained Using AutoTrain - Problem type: Sentence Transformers ## Validation Metrics No validation metrics available ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the Hugging Face Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'search_query: autotrain', 'search_query: auto train', 'search_query: i love autotrain', ] embeddings = model.encode(sentences) print(embeddings.shape) # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) ```