--- library_name: transformers license: apache-2.0 language: - en base_model: - mistralai/Pixtral-12B-2409 pipeline_tag: image-to-text --- # Pixtral-12B-Captioner-Relaxed ## Introduction *Original Pixtral-12B-Captioner-Relaxed from https://huggingface.co./Ertugrul/Pixtral-12B-Captioner-Relaxed/tree/main with tokenizer fix* Pixtral-12B-Captioner-Relaxed is an instruction-tuned version of [Pixtral-12B-2409](https://huggingface.co./mistralai/Pixtral-12B-2409), an advanced multimodal large language model. This fine-tuned version is based on a hand-curated dataset for text-to-image models, providing significantly more detailed descriptions of given images. ### Key Features: * **Enhanced Detail:** Generates more comprehensive and nuanced image descriptions. * **Relaxed Constraints:** Offers less restrictive image descriptions compared to the base model. * **Natural Language Output:** Describes different subjects in the image while specifying their locations using natural language. * **Optimized for Image Generation:** Produces captions in formats compatible with state-of-the-art text-to-image generation models. **Note:** This fine-tuned model is optimized for creating text-to-image datasets. As a result, performance on other complex tasks may be lower compared to the original model. ## Requirements The 12B model needs 24GB of VRAM at half precision. Model can be loaded at 8 bit or 4 bit quantization but expect degraded performance. ## Quickstart ```python from PIL import Image from transformers import LlavaForConditionalGeneration, AutoProcessor from transformers import BitsAndBytesConfig import torch import matplotlib.pyplot as plt # example quantization config, add it to model load parameters to use 4bit quantization quantization_config = BitsAndBytesConfig( # load_in_8bit=True, load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4" ) model_id = "Ertugrul/Pixtral-12B-Captioner-Relaxed" model = LlavaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) processor = AutoProcessor.from_pretrained(model_id) # for quantization just use this instead of previous load # model = LlavaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) conversation = [ { "role": "user", "content": [ {"type": "text", "text": "Describe the image.\n"}, { "type": "image", } ], } ] PROMPT = processor.apply_chat_template(conversation, add_generation_prompt=True) image = Image.open(r"PATH_TO_YOUR_IMAGE") def resize_image(image, target_size=768): """Resize the image to have the target size on the shortest side.""" width, height = image.size if width < height: new_width = target_size new_height = int(height * (new_width / width)) else: new_height = target_size new_width = int(width * (new_height / height)) return image.resize((new_width, new_height), Image.LANCZOS) # you can try different resolutions or disable it completely image = resize_image(image, 768) inputs = processor(text=PROMPT, images=image, return_tensors="pt").to("cuda") with torch.no_grad(): with torch.autocast(device_type="cuda", dtype=torch.bfloat16): generate_ids = model.generate(**inputs, max_new_tokens=384, do_sample=True, temperature=0.3, use_cache=True, top_k=20) output_text = processor.batch_decode(generate_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] print(output_text) ``` ## Acknowledgements For more detailed options, refer to the [Pixtral-12B-2409](https://huggingface.co./mistralai/Pixtral-12B-2409) or [mistral-community/pixtral-12b](https://huggingface.co./mistral-community/pixtral-12b) documentation. You can also try the [Qwen2-VL-7B-Captioner-Relaxed](https://huggingface.co./Ertugrul/Qwen2-VL-7B-Captioner-Relaxed), for an alternative smaller model. It's trianed in a similar manner.