--- language: - en license: llama2 datasets: - umd-zhou-lab/claude2_alpaca model-index: - name: claude2-alpaca-13B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.18 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.21 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 55.93 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 45.02 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.8 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.28 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B name: Open LLM Leaderboard --- # Model Card for umd-zhou-lab/claude2-alpaca-13B This model is trained by fine-tuning llama-2 with claude2 alpaca data. ## Model Details ### Model Description - **Developed by:** UMD Tianyi Zhou Lab - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [meta-llama/Llama-2-13b](https://huggingface.co./meta-llama/Llama-2-13b) ### Model Sources - **GitHub:** [Claude2-Alpaca](https://github.com/Lichang-Chen/claude2-alpaca) - **Data:** [claude2_alpaca](https://huggingface.co./datasets/umd-zhou-lab/claude2_alpaca) ## Uses The primary use of this model is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## Training We use the prompt from [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | | --- | ---: | ---: | ---: | ---: | ---: | | Model (13B) | 128 | 1e-5 | 5 | 2048 | 0 | ## Performance Compared to the llama2-chat, our models can have better average performance.
| | Average | ARC | HellaSwag | MMLU | TruthfulQA | Alpaca_Eval | Avg Length | |---|---|---|---|---|---|---|---| | Llama-2-7b-chat | 56.335 | 52.9 | 78.55 | 48.32 | 45.57 | 71.37 | 1479 | | Llama-2-13b-chat | 59.935 | 59.04| 81.94 | 54.64 | 44.12 | 81.09 | 1513 | ||||||||| | claude_alpaca-7b | 57.78 | 56.66 | 81.17 | 46.58 | 46.71 | 71.23 | 1066 | | claude_alpaca-13b | 61.29 | 61.18 | 84.08 | 55.74 | 44.18 | 78.93 | 1127 | ## Citation Please consider citing our paper if you think our codes, data, or models are useful. Thank you! ``` @misc{claude2-alpaca, author = {Lichang Chen and Khalid Saifullah and Ming Li and Tianyi Zhou and Heng Huang}, title = {Claude2-Alpaca: Instruction tuning datasets distilled from claude}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/Lichang-Chen/claude2-alpaca}}, } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_umd-zhou-lab__claude2-alpaca-13B) | Metric |Value| |---------------------------------|----:| |Avg. |58.57| |AI2 Reasoning Challenge (25-Shot)|61.18| |HellaSwag (10-Shot) |84.21| |MMLU (5-Shot) |55.93| |TruthfulQA (0-shot) |45.02| |Winogrande (5-shot) |76.80| |GSM8k (5-shot) |28.28|