umanr18075
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# Load the model from Hugging Face Model Hub (replace with your model's Hugging Face repository URL)
|
6 |
+
model = joblib.load('random_forest_model.pkl') # If model is uploaded directly in the Space, this works.
|
7 |
+
|
8 |
+
# Streamlit App Title
|
9 |
+
st.title("Power Prediction App")
|
10 |
+
st.subheader("Enter the values for Current (I) and Resistance (R) to predict Power (P)")
|
11 |
+
|
12 |
+
# Input fields for Current (I) and Resistance (R)
|
13 |
+
current = st.number_input("Current (I in Amps)", min_value=0.1, max_value=10.0, value=5.0, step=0.1)
|
14 |
+
resistance = st.number_input("Resistance (R in Ohms)", min_value=1.0, max_value=100.0, value=50.0, step=1.0)
|
15 |
+
|
16 |
+
# Button to make prediction
|
17 |
+
if st.button("Predict Power"):
|
18 |
+
# Predict the power using the trained model
|
19 |
+
prediction = model.predict([[current, resistance]])
|
20 |
+
|
21 |
+
# Display the result
|
22 |
+
st.write(f"Predicted Power (P) for I = {current} A and R = {resistance} Ω is: {prediction[0]:.2f} Watts")
|