File size: 3,085 Bytes
9b053c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
813bb2e
9b053c4
813bb2e
9b053c4
 
 
 
 
 
 
1bcbf9b
 
 
 
6a463d6
 
 
 
 
 
 
1bcbf9b
6a463d6
1bcbf9b
 
 
 
 
9b053c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: mit
base_model: uhhlt/am-roberta
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: am-roberta-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# amharic-hate-speech

This model is a fine-tuned version of [uhhlt/am-roberta](https://huggingface.co./uhhlt/am-roberta) on an [AmahricHateSpeechRANL](https://huggingface.co./datasets/uhhlt/amharichatespeechranlp) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6437
- Accuracy: 0.7373
- Precision: 0.7216
- Recall: 0.7149
- F1: 0.7180

## How to use it


``` python
from transformers import pipeline
amhate_classifier = pipeline("text-classification", model="uhhlt/amharic-hate-speech")
amhate_classifier(["🌳☘️ πŸŒ³β˜˜οΈαˆˆαˆαŒ… αˆαŒ… α‹¨αˆšα‰°αˆ‹αˆˆα α‹˜αˆ˜αŠ• α‰°αˆ»αŒ‹αˆͺ αŠ’αŠ•α‰¨αˆ΅α‰΅αˆ˜αŠ•α‰΅ !!!🌳☘️ 🌳☘️ፒ", 
                  "αŠ αŠ•α‰° αŠ αˆαŠ• αˆαŠ• α‹¨αˆšαˆ‰αˆ… αŠαˆ…? αŒαŠ‘α‹ αŠ αˆαˆ‹αŠͺ αŠ¨αˆ˜αˆ†αŠ• α‹«α‹΅αŠαŠ•α’ αˆ°α‹αŠ• α‹«αŠ­αˆ ፍ጑ር αŠ₯α‹¨αˆžα‰° αˆˆα‹›α α‹­αˆ„αŠ• α‹«αŠ­αˆ αˆ›αˆαˆˆαŠ­ αŒ€αŠαŠαŠα‰΅ αŠ α‹­αˆ˜αˆ΅αˆαˆ ፒ α‹αŠ– 100% α‹«αˆΈαŠ•α‹αˆ",
                  "α‰ αŠ αŠ“α‰΅αˆ… α‰°α‰°αŠ¨αˆ α‰£αŠ•α‹³ α‰°αˆ‹αˆ‹αŠͺ"])
```
Output

```
[{'label': 'normal', 'score': 0.8840981721878052},
 {'label': 'hate', 'score': 0.519339382648468},
 {'label': 'hate', 'score': 0.9630571007728577}]
```
                  
## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.8441        | 1.0   | 94   | 0.6699          | 0.7053   | 0.6913    | 0.6640 | 0.6737 |
| 0.6199        | 2.0   | 188  | 0.6505          | 0.72     | 0.7060    | 0.6995 | 0.6994 |
| 0.5295        | 3.0   | 282  | 0.6240          | 0.736    | 0.7201    | 0.7125 | 0.7159 |
| 0.4614        | 4.0   | 376  | 0.6437          | 0.7373   | 0.7216    | 0.7149 | 0.7180 |
| 0.3955        | 5.0   | 470  | 0.6922          | 0.7207   | 0.7001    | 0.7072 | 0.7031 |
| 0.3529        | 6.0   | 564  | 0.6995          | 0.7247   | 0.7050    | 0.7029 | 0.7039 |
| 0.3076        | 7.0   | 658  | 0.7352          | 0.7253   | 0.7067    | 0.7000 | 0.7031 |
| 0.2863        | 8.0   | 752  | 0.7470          | 0.7227   | 0.7019    | 0.6983 | 0.7000 |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3